본 논문에서는 질감제시장치의 주파수와 진폭의 변화를 이용하여 실시한 예비 실험과 본 실험으로 이루어진 감성평가의 실험에 대해 서술한다. 먼저 예비 실험은 관련 형용사 수집, 적합성 평가, 유사성 평가의 세 단계로 구성되어 있으며, 질감 인식과 관련된 유효한 형용사들을 찾는데 목적을 둔다. 예비실험의 첫 단계인 수집 단계에서 33개의 질감인식과 관련된 형용사를 얻을 수 있었으며, 이들은 형용사의 적합성 평가와 유사성 평가를 통해 최종적인 유효한 10개의 질감 요소로 정리되었다. 이렇게 예비실험 결과 얻어진 10개의 형용사는 본 실험에서의 기초 감각을 기술하는 중요한 요소로서 사용이 된다. 본 실험에서는 10개의 감각의 요소를 규격을 갖춘 7종류의 사포와 질감제시장치의 일정 기준에 의해 선정된 15개의 주파수와 진폭의 조합으로 평가가 된다. 실험 결과 사람에게 인지되는 추상적인 거칠기의 감각요소는 표면의 공간정보(spatial information)에 의해 결정되는 울퉁불퉁함(ruggedness)와 표면의 공간정보 뿐 아니라 시간정보(spatio-temporal information)에 의해 결정되는 까끌까끌함(prickliness)의 두 감각의 요소로 구성되어 있음을 확인할 수 있었다. 또한 개발된 질감제시 장치의 정량적인 제어를 통해 두 가지 감각의 요소를 다양하게 유도시킬 수 있음을 확인하였다.
뇌파는 초기에 원숭이가 모터로 팔을 조작하기 위한 방법에 관한 연구로 시작되었다. 최근에는, 측정한 뇌파를 치매 환자의 치매 진행 정도를 늦추거나 집중력결핍 과잉행동장애 아이들의 집중력을 높이기 위한 연구들이 진행되고 있다. 그리고 저가의 뇌파 측정 장치가 출시되면서 게임 인터페이스로도 사용된다. 뇌파로 게임을 제어할 때의 문제점은 사람마다 평균 진폭, 평균 파장 그리고 평균 진동 횟수가 다르다는 것이다. 뇌파 차이는 뇌파로 게임을 제어할 때 형평성 문제를 발생시키기 때문에 뇌파를 정규화해서 사용하는 방법이 필요하다. 이 논문에서는 정규분포를 사용해서 측정한 뇌파를 정규화하고 제어로 사용할 파형을 계산하는 방법을 제안한다. 이를 위해서 뇌파 변환 과정을 7단계로 나누어 처리하는 프레임워크를 제안하고 각 단계에 필요한 계산과정을 기술한다. 실험에서는 BCI 영어단어 학습 프로그램에 제안한 방법을 적용하여 두 피험자 파형을 비교했다. 실험에서는 두 피험자의 파형 유사 정도를 상관계수로 측정했다. 명상 값은 제안한 방법을 적용할 때 약 13%가 증가되었고 집중 값은 약 8%정도 증가되었다. 제안한 정규화 방법은 뇌파에 반영된 개인의 특성을 줄여서 제어에 적합한 파형으로 변환하기 때문에 게임과 같은 응용프로그램에 적합하다.
한국과 일본의 경우 건표고를 외관의 품질상태 에 따라 12등급에서 16등급으로 구분하고 있다. 그리고 등급판정 작업은 임의로 추출한 샘플을 대상으로 전문 감정가에 의해 수작업으로 수행되고 있다. 건표고의 품질을 결정짓는 외관의 품질인자들은 갓과 내피에 고루 분포하고 있다. 본 논문에서는 컴퓨터 영상처리 시스템에 의거하여 개발한 건표고 자동 등급판정 및 선별 시작시스템의 구조와 기능 그리고 성능에 대하여 설명하였다. 개발한 시작시스템은 표고의 이송과 취급자동화를 위한 진동이송기, 반전장치, 컨베이어 이송장치와 두 세트의 컴퓨터 영상처리 시스템, 그리고 시스템 통괄제어를 위한 IBM PC AT호환 컴퓨터, 디지털 입출력 보드, 전공압실린더 구동제어를 위한 PLC등으로 구성하였다. 등급판정의 효율성 및 실시간 작업시스템을 고려하여 건표고의 등급판정은 두 세트의 컴퓨터 영상처리 시스템을 이용하여 이송되는 건표고의 갓 또는 내피 중 어디가 위를 향하는 지에 따라 두 단계에 걸쳐 독립적으로 판정을 수행하도록 하였다. 첫 번째 영상처리부에서는 갓표면 영상으로부터 4등급의 고품질 표고를 분류하며 두 번째 영상처리부에서는 내피표면 영상으로부터 중간 및 저품질 표고를 8개의 등급으로 분류한다. 실시간 영상정보처리를 목적으로 기존에 개발한 신경회로망을 이용한 등급판정 알고리즘을 시작시스템에 적용하였다. 개발한 시작기는 88% 이상의 등급판정 정확도를 보여 주었으며, 전공압시스템의 구동제약으로 인하여 표고 1개당 약0.7초의 선별시간이 소요되었다. 일조 선별라인의 경우 본 연구에서 제안한 시작기의 선별능력은 표고가 일차 처리부로 갓이 위로 올라와 있는 상태로 계속 공급된다면 시간당 대략 5,000여 개의 표고를 처리할 수 있을 것으로 기대된다.보강하여 가능하면 B-Pillar의 Middle이 Bending type collapse을 방지하여 Pelvis와 Door가 먼저 접촉하는 방법 등이 적용가능하다. 제작하기 이전에 설계된 부품에 대한 스프링 상수 및 내구특성을 체계적으로 규명하여 제품 시험의 횟수를 줄이고, 보다 정밀한 제품을 제작할 수 있도록 하기 위한 것이다.세포수는 초기 배반포기배에서 팽윤 배반포기배로 진행됨에 따라 두배에서 세배 정도 증가되었음을 알 수 있었다. 또한, differential labelling과 bisbenzimide기법에서 얻어진 각각의 총세포수를 비교하였을 때 총세포수는 발달의 진행 정도에 따라 증가되며 그와 동시에 동일한 군 간의 세포수도 거의 유사함을 알 수 있었다. 따라서, ICM과 TE를 differential labelling하는 기법은 수정란의 quality를 평가하는데 매우 유용한 기법으로서 착상전 embryo 발달을 연구하는데 효과적으로 이용될 수 있다는 것을 시사한다. 고도의 유의차를 나타낸 반면 비수구, 초생수로구 및 Bromegrass 목초구 간에는 아무런 유의차가 인정되지 않았다. 7. 농지보전 처리구인 배수구와 초생수로구는 비처리구에 비해 낮은 침두 유출량과 낮은 토양유실량을 나타내었다.구보다 14% 절감되는 것으로 나타났다.작용하는 것으로 사료된다.된다.정량 분석한 결과이다. 시편의 조성은 33.6 at% U, 66.4 at% O의 결과를 얻었다. 산화물 핵연료의 표면 관찰 및 정량 분석 시험시 시편 표면을 전도성 물질로 증착시키지 않고, Silver Paint 에 시편을 접착하는 방법으로도 만족한 시험 결과를 얻을 수 있었다.째, 회복기 중에 일어나는 입자들의 유입은 자기폭풍의 지속시간을 연장시키는 경향을 보이며 큰
대부분의 전단벽 구조물은 통로의 목적으로 개구부를 필요로 하게 되고 전단벽들 사이가 슬래브나 연결보로 연결된 병렬 전단벽의 형태를 띠게 된다. 이러한 구조물에 지진하중이 작용할 때 연결보에 과도한 전단력이 작용하여 연결보가 취성적으로 파괴되거나 전단벽이 먼저 항복하는 문제점이 발생할 수 있다. 이를 방지하기 위하여 연결보에 감쇠장치를 설치하게 되면 구조물의 진동제어효과와 더불어 연결보의 응력집중 및 취성적 파괴를 막을 수 있어서 내진성능 향상을 기대할 수 있다. 본 논문에서는 병렬전단벽 연결보 중앙부에 LRB (Lead Rubber Bearing)가 설치된 구조물의 지진응답제어효과 및 응력의 분포를 평가하여 구조적 효율성을 확인하고자 한다. 이를 위하여 병렬전단벽의 거동을 비교적 정확하게 모사할 수 있는 모형화 방법을 제안하였고, 제안된 모형화 방법을 통하여 지진하중을 받는 예제 병렬구조물에 대한 시간이력해석을 수행한 후 지진응답제어성능을 검토하였다.
밸브는 배관의 유량을 차단 및 제어하기 위한 장치로써 게이트 밸브, 글로브 밸브, 체크 밸브 등 많은 종류가 사용되고 있다. 그 중 글로브 밸브는 고압력 조건에서의 유량조절이 용이하여 LNG 선박, 증기 배관 등에 사용된다. 본 논문에서는 글로브 밸브의 누설 문제를 구조적으로 해결하기 위해 시트의 형상을 변형하는 방법을 제시하였다. 또한 유한 요소 해석을 통해 각 모델의 응력분포와 변형량을 비교하고 이를 통하여 제안한 모델에 대한 검증을 진행하였다. 시뮬레이션 결과 제안된 모델에서 원주 방향의 변형이 줄어들고, 누설을 감소시킬 수 있는 Self-supporting 효과를 확인할 수 있었다.
Recently, deep learning that is the most popular and effective class of machine learning algorithms is widely applied to various industrial areas. A number of research on various topics about structural engineering was performed by using artificial neural networks, such as structural design optimization, vibration control and system identification etc. When nonlinear semi-active structural control devices are applied to building structure, a lot of computational effort is required to predict dynamic structural responses of finite element method (FEM) model for development of control algorithm. To solve this problem, an artificial neural network model was developed in this study. Among various deep learning algorithms, a recurrent neural network (RNN) was used to make the time history response prediction model. An RNN can retain state from one iteration to the next by using its own output as input for the next step. An eleven-story building structure with semi-active tuned mass damper (TMD) was used as an example structure. The semi-active TMD was composed of magnetorheological damper. Five historical earthquakes and five artificial ground motions were used as ground excitations for training of an RNN model. Another artificial ground motion that was not used for training was used for verification of the developed RNN model. Parametric studies on various hyper-parameters including number of hidden layers, sequence length, number of LSTM cells, etc. After appropriate training iteration of the RNN model with proper hyper-parameters, the RNN model for prediction of seismic responses of the building structure with semi-active TMD was developed. The developed RNN model can effectively provide very accurate seismic responses compared to the FEM model.
본 논문은 정전기력을 이용한 마찰력 변조를 이용하여 손끝을 통한 촉각정보의 입출력을 동시 구현하는 소자를 제안하였다. 기존의 촉각소자들이 촉각정보의 입력 및 출력을 개별적으로 구현한 것에 비해 본 연구는 손끝의 수직/수평 방향 동작 인식과 질감 구현을 동시에 구현하였다는 점에서 차별성을 가진다. 실험분석을 통해 검증한 손끝 동작 인식기능은 수직방향의 클릭의 경우 0.146nF/$40{\mu}m$, 수평방향의 경우 0.09nF/$750{\mu}m$의 정전용량 변화를 통해 인식 가능하였으며, 질감 구현의 경우 정전기적 인력을 통해 마찰력을 32~152mN의 범위에서 제어할 수 있음을 확인하였다. 교류전압을 이용한 수평적 진동은 60V, 3Hz에서 최대 128.1mN의 마찰력 변조를 구현하였으며, 이는 기존 연구 대비 32% 향상을 보여준다. 본 연구는 손끝에서 정보의 입출력을 동시 구현하여 정보기기의 촉각인터페이스에 적용 가능하다.
본 논문에서는 전력계통의 저주파 진동 억제와 안정도 향상을 위해 적응 뉴로-퍼지 전 보상기(Adaptive Neuro-Fuzzy Precompensator, ANFP)를 설계하였다. 여기서 ANFP는 종래의 전력계통 안정화 장치(Power System Stabilizer, PSS)를 보상하도록 설계되며, 이 설계기법은 기존의 PSS 최적 파라미터를 구하는 방식과는 달리 현재 사용중인 PSS 파라미터를 고정시켜놓고, ANFP만을 추가하는 구조적인 장점을 나타낸다. 먼저, 학습 능력을 가지는 퍼지 전 보상기가 구성되며, 이는 발전 유니트의 입출력 데이터로부터 학습된다. ANFP는 학습의 특성을 가지기 때문에 보상기의 퍼지규칙과 소속함수는 학습 알고리즘에 의해 자동으로 동조될 수 있다 학습은 ANFP와 목표 제어기(desired controller)의 출력을 비교하여 평가되는 오차를 최소화하도록 수행된다. 사례 연구 들에서 다양한 동작 조건들 상에서 전력계통의 우수한 제동을 제공할 수 있었으며, 시스템의 동특성을 향상시킬 수 있었다
본 연구의 목적은 개폐식 대공간 구조물의 풍하중 산정 및 구조해석의 과정을 자동으로 수행하는 컴포넌트를 개발하는 것이다. 설계한 파라메트릭 모델링을 StrAuto를 통해 구조해석 자동화단계를 거쳐 구조해석용 모델로 변환하는 과정을 실시간으로 연동하여 구조해석 결과를 자동으로 도출하는 과정으로부터 본 연구에서는 추가로 구조물의 풍하중을 형상에 따라 상세히 할당하는 기능을 개발하였다. 이와 같은 과정을 통해 풍하중에 대한 최적화를 수행하여, 기존 설계된 구조의 물량을 줄이고, 구조적 안정성은 유지하는 방향으로 결론을 도출하였다. 추후에는 본 예제 모델을 통해 진동제어 최적화를 위한 제진장치 설치위치의 자동탐색이 가능하게 되는 연구를 진행할 계획이다.
본 논문에서는 소형 전자기기와 같은 발열부 온도 제어를 위해 압전 소자와 열전 소자를 이용하여 국소부 냉각 성능을 실험적으로 조사해 보았다. 실험은 열전 소자를 이용하여 실험 영역내에 냉각부를 형성하고, 압전 소자에 80Hz와 110Hz 의 인가주파수를 각각 적용하여, 압전 소자를 작동시켰을 때와 작동시키지 않았을 때 열전 소자에 의해 형성된 시험부의 냉각 영역에서 온도 분포를 측정하였다. 또한, 냉각 영역의 온도측정 결과를 토대로 압전 소자를 적용하였을 때와 적용하지 않았을 때 냉각 영역의 성능 계수를 계산하고, 가시화 장치를 구성한 후 시험부내에 냉각 영역의 열유동 현상도 확인해 보았다. 실험결과, 온도분포 측정 실험 결과와 성능 계수 계산 결과로 부터 압전 소자를 작동하지 않은 경우보다 압전 소자를 작동한 경우에서 냉각 성능이 개선되는 것을 확인할 수 있었다.. 또한, 가시화 결과를 토대로 열전 소자에 의해 형성된 냉각 영역에 압전 소자를 작동시켰을 경우에 냉각 영역의 국소부에 압전 소자에 의한 상하 진동의 강제 대류 현상이 발생하면서 냉각영역 전체에 고르게 분포하는 유동을 형성하고 냉각 성능이 개선되는 원인을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.