• Title/Summary/Keyword: 진동절연

Search Result 214, Processing Time 0.021 seconds

Shape design for viscoelastic vibration isolators to minimize rotational stiffness (회전강성 최소화를 위한 절연요소의 형상 설계)

  • Oh, Hwan-Youp;Kim, Kwang-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.343-347
    • /
    • 2008
  • Design of shape for visco-elastic vibration isolation elements, which are very cost-effective and so popular in many applications is frequently based on experiences, intuitions, or trial and errors. Such traditions in shape design make it difficult for drastic changes or new concepts to come out. In this paper, both topological method and shape optimization method are combined together to find out a most desirable isolator shape efficiently by using two commercial engineering programs. ABAQUS and MATLAB. The procedure is divided into two steps. At the first step, a topology optimization method is employed to find an initial shape. where density of either 0 or 1 for finite elements is used for physical realizability. At the second step, based on the initial shape, finer tuning of the shape is done by boundary movement method. An illustration of the procedure will be presented for a mount of an air-conditioner compressor system and the effectiveness will be discussed.

  • PDF

Vibration Isolation System for Driver's Seats with Negative Stiffness (운전자용 의자의 부강성 진동 절연 시스템)

  • Park, Sung-Tae;Lee, Sang-Joo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.2
    • /
    • pp.114-121
    • /
    • 2010
  • As a vehicle speed increases, more vibration energy is transmitted from chassis to a driver. Current isolation system for the driver's seat by damping control can reduce the transmitted vibration energy near resonance area. But in higher frequency region than natural frequency multiplied by $\sqrt{2}$, the vibration energy transmitted to the driver has a tendency to be increased. Therefore, the method by natural frequency reduction of the system is preferred to increase the effectiveness of the anti-vibration. However, the natural frequency could not be freely reduced due to the nature of the isolation system structure. A new passive suspension system to reduce the natural frequency is proposed. The theoretical analysis and experimental results show better vibration attenuation compared with the current isolation system.

Shape Design for Viscoelastic Vibration Isolators to Minimize Rotational Stiffness (회전강성 최소화를 위한 절연요소의 형상 설계)

  • Oh, Hwan-Youp;Kim, Kwang-Joon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.12
    • /
    • pp.1250-1255
    • /
    • 2008
  • Design of shape fur visco-elastic vibration isolation elements, which are very cost-effective and so popular in many applications is fi?equently based on experiences, intuitions, or trial and errors. Such traditions in shape design make it difficult for drastic changes or new concepts to come out. In this paper, both topological method and shape optimization method are combined together to find out a most desirable isolator shape efficiently by using two commercial engineering programs, ABAQUS and MATLAB. The procedure is divided into two steps. At the first step, a topology optimization method is employed to find an initial shape, where density of either 0 or 1 for finite elements is used fur physical realizability. At the second step, based on the initial shape, finer tuning of the shape is done by boundary movement method. An illustration of the procedure is presented fur a mount of an air-conditioner compressor system and the effectiveness is discussed.

Effects of Rotational Stiffness of Isolators on Vibration Power Transmission in Vibration Isolation Systems over High Frequency Range (진동 절연계에서 절연요소 회전강성계수가 고주파수 대역 진동파워 전달에 미치는 영향)

  • 김진성;이호정;김광준
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.5
    • /
    • pp.375-383
    • /
    • 2003
  • For a performance analysis of vibration isolation systems, the concept of vibration power flow can be employed preferably when noise radiated from the supporting structure with finite impedances is of interest. The idea is basically simple to understand and formulas for precise estimation of the vibration power are easy to derive. However, It is often required to simplify the process of experimentation under several assumptions due to instrumental limitations. For an example, rotational degree of freedom has not been well treated in bending vibrations of beam or plate-like structures. Yet, several recent studies showed that the moments and rotations play an important role in power transmission and should be taken into consideration carefully as the frequency range of interest goes to audibly high. Therefore, it is readily agreed that reduction of the noise radiation over the high frequency range can be effectively accomplished by adjusting the rotational stiffness of the isolator without changing the vibration isolator efficiency in low frequency range relevant to the translational stiffness of the isolator In this paper, the vibration power flow approach is applied to an AC motor installed on a finite plate in order to illustrate the contribution of the rotational vibration power to the total vibration power transmission. The effects of rotational stiffness of the isolator on the vibration power transmission are investigated by inserting various shapes of Isolators with different rotational stiffness but with $ame translational stiffness between the motor and the plate. The resultant noise radiation from the plate is presented to verify the proposed approach.

Verification of Micro-vibration Isolation Performance by using Low Rotational Stiffness Isolator under Elevation Direction Operation of the X-band Antenna (저 회전강성 진동 절연기에 의한 X-밴드 안테나의 고각방향 미소진동 절연 효과 검증)

  • Jeon, Su-Hyeon;Lee, Jae-Gyeong;Jeong, Sae-Han-Sol;Lee, Myeong-Jae;Oh, Hyun-Ung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.4
    • /
    • pp.238-246
    • /
    • 2015
  • A stepping motor is widely used to operate the elevation and azimuth stage of the X-band antenna with 2-axis gimbal system for effective image data transmission from a satellite to a ground station. However, such stepping motor also generates an undesirable micro-vibration which is one of the main disturbance sources affecting image quality of the high-resolution observation satellite. In order to improve the image quality, the micro-vibration isolation of the X-band antenna system is essential. In this study, the low rotational stiffness isolator has been proposed to reduce the micro-vibration disturbance induced by elevation direction operation of the X-band antenna. In addition, its structural safety was confirmed by the structure analysis based on the derived torque budget. The effectiveness of the design was also verified through the micro-vibration measurement test.

A Design Criterion for the Vibration of a Marine Diesel Generator Set (선박용 디젤발전기의 진동 절연을 위한 설계 기준)

  • Lee, D.C.;Brennan, M.J.;Mace, B.R.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.648-655
    • /
    • 2005
  • The resilient mounts of a diesel engine installed onboard a ship should be designed for both static and dynamic loads. If possible, the resonance frequencies of the six rigid body modes of the installation and the flexible modes of the engine support structure should not lie within the engine operation range. In this paper a design criterion is proposed to evaluate an isolation system which involves the summation of dynamic forces transmitted through the resilient mounts and elastic potential energy index stored in the mounts. A case study is also presented in which a diesel engine generator, which had an elastic foundation and was mounted in a 5500 TEU container vessel, was studied both theoretically and experimentally. The theoretical analysis of the test model was performed by using a single mass 6 degree of freedom system. Actual measurements of mechanical vibration of the Engine and its foundation onboard were carried out, which showed the importance of including the flexibility of the engine support structure in the mode

  • PDF

Torsional Vibration Isolation Performance Evaluation of Centrifugal Pendulum Absorbers for Clutch Dampers (클러치 댐퍼용 원심 진자 흡진기의 비틀림 진동 절연 성능 평가)

  • Song, Seong-Young;Shin, Soon-Cheol;Kim, Gi-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.4
    • /
    • pp.436-442
    • /
    • 2016
  • This paper presents the torsional vibration isolation performance evaluation of a centrifugal pendulum absorbers (CPAs) that has a continuously varying resonance frequencies proportional to engine firing (excitation) order. CPAs are commonly used to suppress torsional vibrations in rotating machinery and internal combustion engines. In this study, they are employed on the current spring type torsional damper inside a torque converter of automotive vehicle. To evaluate the effectiveness of designed resonance tuning order, the torsional vibration transmissibility based on torque measurements with respect to different engine firing orders is experimentally measured with a lower-inertia dynamometer. The torsional vibration transmissibility with respect to different frequencies with engine order of 2 is also evaluated. It has been demonstrated that the significant vibration reduction over operational frequency range of interest can be achieved by attaching simple pendulums. Future research direction includes the study on theoretical analysis, improved design of pendulum etc.

A Design Criterion for the Vibration Isolation of a Marine Diesel Generator Set (선박용 디젤발전기의 진동 절연을 위한 설계 기준)

  • Brennan M.J.;Mace B.R.;Lee, D.C.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.4 s.109
    • /
    • pp.329-338
    • /
    • 2006
  • The resilient mounts of a diesel engine installed onboard a ship should be designed for both static and dynamic loads. If possible, the resonance frequencies of the six rigid body modes of the installation and the flexible modes of the engine support structure should not lie within the engine operation range. In this paper a design criterion is proposed to evaluate an isolation system which involves the summation of dynamic forces transmitted through the resilient mounts and elastic potential energy index stored in the mounts. A case study is also presented in which a diesel engine generator, which had an elastic foundation and was mounted in a 5500 TEU container vessel, was studied both theoretically and experimentally. The theoretical analysis of the test model was performed by using a single mass 6 degree of freedom system. Actual measurements of mechanical vibration of the engine and its foundation onboard were carried out, which showed the importance of including the flexibility of the engine support structure in the mode.

A study on the vibration sensor application of cellulose piezoelectric paper (셀룰로오스 압전 종이를 이용한 진동 센서 응용 연구)

  • Kim, Heung-Soo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.288-289
    • /
    • 2011
  • 압전 효과에 기초한 셀룰로오스 압전 종이의 진동센서 응용 가능성을 알아보았다. EAPap (Electroactive paper)은 재생과정과 테입 캐스팅을 이용해 만들었으며, 얇은 적층 필름을 이용해 코팅하였다. EAPap 샘플을 알루미늄 외팔보에 부착하여 진동 실험을 수행하였다. EAPap 센서의 출력을 비교하기 위해 가속도계를 이용하여 보의 응답 특성을 동시에 측정하였으며, 유한요소법을 이용해 보의 동특성을 구하여 비교하였다. EAPap 센서는 주위 환경 노이즈의 영향을 많이 받았는데, 접지와 절연을 통해 이러한 노이즈의 영향을 많이 감소시킬 수 있었으며, 실험결과로부터 EAPap의 진동센서 응용 가능성을 확인하였다.

  • PDF

Multi-dimensional vibration/noise isolation by vibration power analysis (다차원 진동/소음 절연을 위한 진동 파워 이용법)

  • Kim, Gwang-Jun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.33-48
    • /
    • 2000
  • Limitations of the simple single degree of freedom vibration isolation theory in real applications are discussed and a theory of multi-dimensional vibration/noise isolation by power approach is introduced. Illustrations of the application to compressor of an air-conditioner are presented together with problems caused by approximations. Then possible sources of distortions in the vibration power estimation are looked into and some relevant research topics are suggested.

  • PDF