• Title/Summary/Keyword: 진동유동

Search Result 870, Processing Time 0.025 seconds

Controlling Low Frequency Instability in Hybrid Rocket Combustion With Swirl Injection and Fuel Insert (스월 분사와 삽입연료에 의한 하이브리드 로켓 연소의 저주파수 연소불안정 조절)

  • Hyun, Wonjeong;Lee, Chanjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.2
    • /
    • pp.139-146
    • /
    • 2021
  • In hybrid rocket combustion, the oxidizer swirl injection is frequently used to stabilize the combustion as the rotational velocity component affects the boundary layer flow. However, as the swirl strength increases, a problem arises where the combustion performance changes too much. Thus, this study attempts to control the low frequency instability while minimizing the change in combustion performance by adapting attenuated swirl injection with fuel insert used in reference [7]. To this end, a series of experimental tests were performed by varying swirl intensity and the location of the fuel insert. In the tests, the occurrence of combustion instability and combustion performance were closely monitored. The results confirmed that combustion instability was successfully suppressed at the condition of the swirl angle 6 degree and the location of fuel insert 310 mm. And, the changes in combustion pressure, O/F ratio, and fuel regression rate were found as minimal compared to the baseline case. Also the results reconfirmed that the formation of positive coupling between two high frequency oscillations in 500 Hz band, combustion pressure(p') and heat release oscillation(q'), is the necessary and sufficient condition of the occurrence of low frequency instability.

Analysis of the Relationship between the Flow Characteristics of the Tsushima Warm Current and Pacific Decadal Oscillation (대마난류의 유동 특성과 PDO의 관계 분석)

  • Seo, Ho-San;Chung, Yong-Hyun;Kim, Dong-Sun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.882-889
    • /
    • 2022
  • In this study, to understand the factors influencing the flow change the Tsushima Warm Current (TWC), the correlation between the volume transport the TWC, El Niño Southern Oscillation (ENSO), and Pacific Decadal Oscillation (PDO) was analyzed. A calculation of the monthly volume transport of TWC for 25 years (1993-2018) revealed that the seasonal fluctuation cycle was the largest in summer and smallest in winter. Power spectrum analysis to determine the periodicity of the TWC volume transport, Oceanic Niño Undex (ONI), and PDO indicated that the TWC volume transport peaked at a one year cycle, but ONI and PDO showed no clear cycle. Further, to understand the correlation between the TWC transport volume and ONI and PDO, the coherence estimation method was used for analysis. The coherence of ONI and PDO had a high mutual contribution in long-period fluctuations of three years or more but had low mutual contribution in short-period fluctuations within one year. However, the coherence value between the two factors of the TWC volume transport and PDO was 0.7 in the 0.8-1.2 year cycle, which had a high mutual contribution. Meanwhile, the TWC volume transport and PDO have an inverse correlation between period I (1993-2002) and period III (2010-2018). When the TWC maximum transport volume (2.2 Sv or more) was high, the PDO index showed a negative value below -1.0, and the PDO index showed a positive value when the TWC maximum transport volume was (below 2.2 Sv). Therefore, using long-term PDO index data, changes in the TWC transport volume and water temperature in the East Sea coastal area could be predicted.

축소 노즐에서의 슬롯 막냉각 열전달 특성에 관한 연구

  • 조용일;조형희
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.33-33
    • /
    • 2000
  • 고온의 연소가스로부터 노즐 표면을 보호하기 위하여 슬롯을 통하여 냉각 유체를 분사하는 슬롯 막냉각에 대하여 연구하였다. 냉각효율 및 열전달 특성은 주유동과 2차 유동의 분사율에 따라 크게 달라지며, 형상변화 및 유동가속에 의해서도 냉각 효과의 변화를 가져오게 된다. 따라서 본 연구에서는 실험을 통하여 면적비가 16:1인 축소노즐에서 압축성 효과를 배제할 수 있는 유동속도 범위 내에서 분사율 변화(0.5 $\leq$ M $\leq$ 3.0)에 따른 슬롯 막냉각 열전달 특성을 고찰하고, 평판 슬롯 막냉각 경험식의 결과와 비교하였으며, 수치해석을 통하여 축소노즐과 원형관에서의 냉각효율 및 열전달 특성을 비교함으로서 이를 검증하였다. 축소노즐에서의 슬롯 막냉각 열전달 특성은 단열벽면조건을 형성하여 노즐 표면을 따라 설치된 열전대를 이용하여 측정하였다. 그 결과 상대적으로 낮은 분사율(M=0.5, 1.0)에서 분사율 증가에 따른 냉각효율의 증가가 크게 나타났으며, 분사율이 높아짐(M $\geq$ 2.0)에 따라 냉각효율의 증가폭이 점점 감소하고, 일정 분사율 이상에서는 냉각 효율의 증가가 크게 둔화되었다. 분사율이 낮을 경우 평판 슬롯 막냉각 경험식으로 주어진 결과보다 상류에서는 높으나 하류로 진행하면 비슷한 냉각효율을 보였고, 분사율이 높은 경우 평판보다 전 범위에서 약간 높은 냉각효율을 나타냈다. 수치해석 결과에서는 분사율이 낮을 경우 축소노즐의 냉각효율이 원형관에서의 냉각효율 보다 낮거나 비슷하게 나타났으며, 분사율이 높아짐에 따라 축소노즐에서의 냉각효율이 오히려 높아지는 것으로 나타났다.타내었다. 액체 제트의 속도는 처음에는 일정하게 유지되다가 운동량을 보존하기 위해 가스로부터 운동량을 받아 점차 가속되어지는 것으로 나타났다.본 규격은 키, 총장, 어깨길이, 등길이, 머리길이, 머리둘레, 진동둘레, 목둘레, 가슴둘레, 허리둘레, 배둘레, 엉덩이둘레, 앞품, 뒤품, drop치를 포함하고 있고, 각 규격에서 호칭간 치수 간격도 함께 제시하고 있다. 본 연구 결과에서 보듯, 현행 8규격의 무진복의 각 호칭간 적정 허용범위를 고려해 합리적인 치수체계를 정립한다면 치수에 대한 적합도가 상당히 증가할 뿐 아니라 생산비용도 상당히 감축할 것으로 생각된다.나타났다. 4) 호감적 서비스능력 차원에서 세 독립변수간에 유의한 3원 상호작용이 존재하는 것으로 나타나( $F_{2,228}$=15.62, P<.001) 20대에 적합한 의복 착용시( $F_{2,228}$=3.98, P<.05)와 60대에 적합한 의복 착용시( $F_{2,228}$=16.55, P<.001) 점포유형과 격식차림간에는 유의한 상호작용이 존재하는 것으로 나타났다. 5) 호감을 구성하는 세 요인들이 구매의도에 미치는 영향을 조사한 결과 호감적 인상차원은 29%(P<.001), 호감적 서비스능력차원은 6%(P<.001)의 구매의도를 설명해 주는 것으로 나타났다. 본 연구결과 노년 소비자에게 호감을 주는 판매원의 외모는 구매의도에 영향을 주어 실버의류산업의 이익증대와 밀접한 연관을 갖는 서비스품질의 중요한 요인으로 밝혀졌다.중요한 요인으로 밝혀졌다.로운 단백질 EPSPS가 다른 여러 식물에 이미 존재하고 있는 단백질로서 우리가 이미 이러

  • PDF

Experimental Observation of Instability of Supersonic Submerged Jets (수중초음속제트의 불안정성에 대한 실험적 고찰)

  • 정재권;이대훈;차홍석;박승오;권세진
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.2
    • /
    • pp.45-52
    • /
    • 2002
  • An experimental investigation on the structure and dynamic behavior of two dimensional over-expanded air jets exiting into water was carried out. The hish speed digital video imaging and static pressure distribution measurement were made to characterize the structure and time-dependant behavior of the jets. Mach number at the jet exit was 2.0 and was slightly less than the value predicted by the ideal nozzle calculation. Variance of jet spreading angle at different stagnation condition was measured as a function of mass flow rate. Periodic nature of the air jet distortion in water was observed and the frequency of the repetition was approximately 5-6 Hz for all cases tested. Three characteristic length scales were defined to characterize jet structure. $L_1$, maximum width of the plume when the periodic instability occurs, $L_2$, width of the jet where secondary reverse flow entrained jet flow and $L_3$, distance from the jet exit to the location where entrainment of the secondary reverse flow occurs. The ratio of $L_1$ and $L_2$ decreased with increasing stagnation pressure, i.e. mass flow rate. $L_3$ increased with increasing stagnation pressure. The temporal behavior of static pressure measurements also showed peak around frequency of 5, which corresponds the frequency obtained by visual measurements

Evaluation of applicability of xanthan gum as eco-friendly additive for EPB shield TBM soil conditioning (친환경 첨가제로서 잔탄검의 토압식 쉴드 TBM 쏘일 컨디셔닝 적용성 평가)

  • Suhyeong Lee;Hangseok Choi;Kibeom Kwon;Byeonghyun Hwang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.3
    • /
    • pp.209-222
    • /
    • 2024
  • The Earth Pressure Balance (EPB) shield Tunnel Boring Machine (TBM) is widely used for underground tunnel construction for its advantages, such as eliminating the need for additional facilities compared to the slurry shield TBM, which requires Slurry Treatment Plant (STP). During EPB shield TBM excavation, a soil conditioning technique is employed to enhance the physical properties of the excavated soil by injecting additives, thus broadening the range of applicable ground conditions to EPB shield TBMs. This study explored the use of xanthan gum, a type of biopolymer, as an alternative to the commonly used polymer additive. Biopolymers, derived from biological sources, are fully biodegradable. In contrast to traditional polymers such as polyacrylic acid, which contain environmentally harmful components, xanthan gum is gaining attention as an eco-friendly material due to its minimal toxicity and environmental impact. Test conditions with similar workability were established through slump tests, and the rheological characteristics were assessed using a laboratory pressurized vane shear test apparatus. The experiments demonstrated that, despite exhibiting similar workability, the peak strength in the flow curve decreased with increasing the content of xanthan gum. Consequently, a correlation between the xanthan gum content and peak strength was established. Replacing the traditional polymers with xanthan gum could enable stable EPB shield TBM operation by reducing equipment load, in addition to offering environmental benefits.

Semi-Active Control System Based on the Experimental Results of the Performance of a Small Scale MR Damper (소형 MR감쇠기의 성능 실험에 기초한 준능동 제어 시스템)

  • Min Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.3 s.73
    • /
    • pp.233-238
    • /
    • 2006
  • In this paper, mixed mode magneto-rheological(MR) damper, which is applicable for vibration control of a small scale multi-story structure, is devised. First, the schematic configurations of the shear, flow, and mixed mode MR dampers are described with design constraints and then the analytical models to predict the field-dependent damping forces are derived for each type. Second, an appropriate size of the mixed mode MR damper is manufactured and its field-dependent damping characteristics are evaluated in time domain. Finally, the performance of the manufactured MR damper which is semi-actively applied to a small scale building excited by earthquake load, is numerically evaluated.

The Basic Study on the Technique of Fluid Flow Analysis Using the Immersed Boundary Method (가상 경계 방법을 이용한 유동 해석 기법에 관한 기초 연구)

  • Yang, Seung-Ho;Ha, Man-Yeong;Park, Il-Ryong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.6
    • /
    • pp.619-627
    • /
    • 2004
  • In most industrial applications, the geometrical complexity is combined with the moving boundaries. These problems considerably increase the computational difficulties since they require, respectively, regeneration and deformation of the grid. As a result, engineering flow simulation is restricted. In order to solve this kind of problems the immersed boundary method was developed. In this study, the immersed boundary method is applied to the numerical simulation of stationary, rotating and oscillating cylinders in the 2-dimensional square cavity. No-slip velocity boundary conditions are given by imposing feedback forcing term to the momentum equation. Besides, this technique is used with a second-order accurate interpolation scheme in order to improve the accuracy of flow near the immersed boundaries. The governing equations for the mass and momentum using the immersed boundary method are discretized on the non-staggered grid by using the finite volume method. The results agree well with previous numerical and experimental results. This study presents the possibility of the immersed boundary method to apply to the complex flow experienced in the industrial applications. The usefulness of this method will be confirmed when we solve the complex geometries and moving bodies.

Natural Convective Flow and Heat Transfer in a Square Enclosure with a Horizontal Partition (수평격판을 갖는 정사각형 밀폐공간내에서 자연대류 유동 및 열전달)

  • 정인기;김점수;송동주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2304-2314
    • /
    • 1993
  • Natural convective flow and heat transfer in a two-dimensional square enclosure fitted with a horizontal partition are investigated numerically. The enclosure was composed of the lower hot and the upper cold horizontal walls and the adiabatic vertical walls, and a partition was situated perpendicularly at the one vertical insulated wall. The governing equations are solved by using the finite element method with Galerkin method. The computations were carried out with the variations of length, position and thermal conductivity of the partition, and Rayleigh number based on the temperature difference between two horizontal walls and the enclosure height with water(Pr=4.95). As the results, an oscillatory motion of natural convection is resulted in a sudden rise of overall heat transfer, but the increase of length of partition is significantly restrained the increase of Nusselt number. The maximum heat transfer was shown just before the transition of the direction of oscillating flow. An oscillatory motion of flow was perfectly shown the stability with the decrease of the length of partition and Rayleigh number. Also, the heat transfer was raised with the increase of the thermal conductivity in proportion to the increase of the length of partition. The stability and oscillation of flow are affected by the position of partition.

Numerical Study of Periodic Turbulent Flow for a Pipe with an Orifice Ring (오리피스 링이 부착된 원관내 주기적인 난류운동에 대한 수치해석)

  • 맹주성;양시영;서현철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2294-2303
    • /
    • 1993
  • This paper investigated the characteristics of the turbulent incompressible flow past the orifice ring in an axi-symmetric pipe. The flow field was the turbulent pulsatile flow for Reynolds number of $2{\times}10^{5}$ which was defined based on the maximum velocity and the pipe diameter at the inlet, with oscillating frequence $(f_{os})=1/4{\pi}$ which was considered as quasi-steady state frequence. In the present investigation, finite analytic method was used to solve the governing equations in Navier Stokes and turbulent transport formulations. Particularly at high Reynolds number and low oscillation frequency, the effects of orifice ring on the flow were numerically investigated. The separation zone behind the orifice ring during the acceleration phase was found to be decreased. However, during the deceleration phase, the separation behind the orifice ring for pulsatile flow continuously grow to a size even larger than that in steady flow. The pressure drop in steady flow was found to be constant and always positive while for pulsatile flow the pressure drop change with time. And large turbulent kinetic energy, dissipation rate were found to be located in the region where the flow passes through the orifics ring. The maximum turbulent kinetic energy, generally occurs along the shear layer where the velocity gradient is large.

Immersed Boundary Method for Flow Induced by Transverse Oscillation of a Circular Cylinder in a Free-Stream (가상경계법을 사용한 횡단 진동하는 실린더 주위의 유동 해석)

  • Kim, Jeong-Hu;Yoon, Hyun-Sik;Tuan H.A.;Chun, Ho-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.3 s.147
    • /
    • pp.322-330
    • /
    • 2006
  • Numerical calculations are carried out for flow past a circular cylinder forced oscillating normal to the free-stream flow at a fixed Reynolds number equal to 185. The cylinder oscillation frequency ranged from 0.8 to 1.2 of the natural vortex-shedding frequency, and the oscillation amplitude extended up to 20% of the cylinder diameter. IBM (Immersed Boundary Method) with direct momentum forcing was adopted to handle both of a stationary and an oscillating cylinder Present results such as time histories of drag and lift coefficients for both stationary and oscillating cases are in good agreement with previous numerical and experimental results. The instantaneous wake patterns of oscillating cylinder with different oscillating frequency ratios showed the synchronized wakes pattern in the lock-in region and vortex switching phenomenon at higher frequency ratio than the critical frequency ratio.