• Title/Summary/Keyword: 진동수 민감도

Search Result 154, Processing Time 0.026 seconds

Analysis of the Optical Measurement Error Induced by Vibration of the Optical Measurement Tower for Large Mirrors (대구경 반사경 광학측정용 타워의 진동에 의한 광학측정오차 분석)

  • Kang, Pilseong;Kim, Ohgan;Ahn, Hee Kyung;Yang, Ho-Soon
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.6
    • /
    • pp.281-289
    • /
    • 2017
  • In the present research, the optical measurement error induced by vibration of the optical measurement tower for large mirrors at KRISS (Korea Research Institute of Standards and Science) is investigated. The vibrations of the tower structure, the interferometer, and the null lens are measured while the surface errors of the 600-mm-diameter on-axis aspheric mirror are measuring, under various environmental conditions. The increase of surface error induced by alignment error with respect to vibration is analyzed. As a result, the interferometer and the null lens, which are located on the top of the tower, are highly sensitive to vibration. Additionally, the surface error of the mirror is strongly increased when the vibration directions of the interferometer and the null lens are different. To reduce the alignment error and the surface error induced by vibration, the tower structure should be improved, to be insensitive to low-frequency vibration. Alternatively, optical measuring under stable conditions by vibration monitoring can improve the reliability of the surface error measurement.

Uniform Hazard Spectra of 5 Major Cities in Korea (국내 5개 주요 도시에 대한 등재해도 스펙트럼)

  • Kim, Jun-Kyoung;Wee, Soung-Hoon;Kyung, Jai-Bok
    • Journal of the Korean earth science society
    • /
    • v.37 no.3
    • /
    • pp.162-172
    • /
    • 2016
  • Since the Northridge earthquake in 1994 and the Kobe earthquake in 1995 occurred, the concept of performance based design has been introduced for designing various kinds of important structures and buildings. Uniform hazard spectra (UHS), with annual exceedance probabilities, corresponding to the performance level of each structure, are required for performance-based design. The probabilistic seismic hazard analysis was performed using spectral ground motion prediction equations, which were developed from both Korean Peninsula and Central and Eastern US region, and several seismotectonic models suggested by 10 expert panel members in seismology and tectonics. The uniform hazard spectra for 5 highly populated cities in Korea, with recurrence period of 500, 1,000, and 2,500 years using the seismic hazard at the frequencies of 0.5, 1.0, 2.0, 5.0, 10.0 Hz and Peak ground acceleration (PGA) were analyzed using the probabilistic seismic hazard analysis. The sensitivity analysis suggests that spectral ground motion prediction equations impact much more on seismic hazard than what seismotectonic models do. The uniform hazard spectra commonly showed a maximum hazard at the frequency of 10 Hz and also showed the similar shape characteristics to the previous study and related technical guides to nuclear facilities.

Locating Microseismic Events using a Single Vertical Well Data (단일 수직 관측정 자료를 이용한 미소진동 위치결정)

  • Kim, Dowan;Kim, Myungsun;Byun, Joongmoo;Seol, Soon Jee
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.2
    • /
    • pp.64-73
    • /
    • 2015
  • Recently, hydraulic fracturing is used in various fields and microseismic monitoring is one of the best methods for judging where hydraulic fractures exist and how they are developing. When locating microseismic events using single vertical well data, distances from the vertical array and depths from the surface are generally decided using time differences between compressional (P) wave and shear (S) wave arrivals and azimuths are calculated using P wave hodogram analysis. However, in field data, it is sometimes hard to acquire P wave data which has smaller amplitude than S wave because microseismic data often have very low signal to noise (S/N) ratio. To overcome this problem, in this study, we developed a grid search algorithm which can find event location using all combinations of arrival times recorded at receivers. In addition, we introduced and analyzed the method which calculates azimuths using S wave. The tests of synthetic data show the inversion method using all combinations of arrival times and receivers can locate events without considering the origin time even using only single phase. In addition, the method can locate events with higher accuracy and has lower sensitivity on first arrival picking errors than conventional method. The method which calculates azimuths using S wave can provide reliable results when the dip between event and receiver is relatively small. However, this method shows the limitation when dip is greater than about $20^{\circ}$ in our model test.

Algebraic Method for Computation of Natural Frequency and Mode Shape Sensitivities (고유진동수와 모드의 민감도를 계산하기 위한 대수적 방법)

  • Jung, Gil-Ho;Kim, Dong-Ok;Lee, Chong-Won;Lee, In-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.5
    • /
    • pp.707-718
    • /
    • 1997
  • This paper presents an efficient numerical method for the computation of eigenpair derivatives for a real symmetric eigenvalue problem with distinct and multiple eigenvalues. The method has a very simple algorithm and gives an exact solution. Furthermore, it saves computer sotrage and CPU time. The algorithm preserves not only the symmetricity but also the band width of the matrices, allowing efficient computer storage and solution techniques. Results from the proposed method for calculating the eigenpair derivatives are compared with those from Rudisill and Chu's method and Nelson's method which is known efficient one in the case of distinct natural frequencies. As an example to demonstrate the efficiency of the proposed method in the case of distinct eigenvalues, a cantilever plate is considered. The design parameter of the cantilever plate is its thickness. For the eigenvalue problem with multiple natural frequencies, the adjacent eigenvectors are used in the algebraic equation as side conditions, lying adjacent to the multiplicity of multiple natural frequency distinct eigenvalues, which appear when design parameter varies. A cantilever beam is used to demonstrate the efficiency of the proposed method in the case of multiple natural frequencies. Results form the proposed method for calculating the eigenpair derivatives are compared with those from Dailey's method(an amendation of Ojalvo's work) which finds the exact eigenvector derivatives. The design parameter of the cantilever beam is its height. Data is presented showing the amount of CPU time used to compute the first ten eigenpair derivatives by each method. It is important to note that the numerical stability of the proposed method is proved.

Frequency Shaped Optimal Control of Semi-active Suspension System Using an MR Damper (자기유변유체를 이용한 반능동형 현가장치의 Frequency shaped 최적 제어)

  • 김기덕;이재형;전도영
    • The Korean Journal of Rheology
    • /
    • v.11 no.2
    • /
    • pp.112-121
    • /
    • 1999
  • An MR(Magneto-Rheological) fluids damper is designed and applied to vibration suppression of a 1/4 car model. The damping constant of MR damper changes according to input current which is controlled in a semi-active way. Several control algorithms are compared in simulations and experiments. The advantage of the proposed Frequency shaped LQ control is that passenger comfort is emphasized in the range of 4~8Hz and driving safety is emphasized around the resonance frequency of unsprung mass.

  • PDF

Fundamental Frequency Extraction of Stay Cable based on Energy Equation (에너지방정식에 기초한 사장 케이블 기본진동수 추출)

  • Kim, Hyeon Kyeom;Hwang, Jae Woong;Lee, Myeong Jae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.125-133
    • /
    • 2008
  • According to longer and longer span, dynamic instability of stay cable should be prevented. Dynamic instability occurs mainly symmetric 1st mode and antisymmetric 1st mode in stay cable. Especially symmetric 1st mode has a lot of influence on sag. Therefore fundamental frequency of stay cable is different from that of taut sting. Irvine, Triantafyllou, Ahn etc. analyzed dynamic behavior of taut cable with sag through analytical technical and their researches give important results for large bounds of Irvine parameter. But each research shows mutually different values out of characteristic (cross-over or mode-coupled) point and each solution of frequency equations of all researchers can be very difficultly found because of their very high non-linearity. Presented study focuses on fundamental frequency of stay cable. Generalized mechanical energy with symmetric 1st mode vibration shape satisfied boundary conditions is evolved by Rayleigh-Ritz method. It is possible to give linear analytic solution within characteristic point. Error by this approach shows only below 3% at characteristic point against existing researches. And taut cable don't exceed characteristic point. I.e. high accuracy, easy solving techniques, and a little bit limitations. Therefore presented study can be announced that it is good study ergonomically.

Vibration-Based Nondestructive Evaluation of Thermal Stress-Induced Damage in Thin Composite Laminates (복합 적층 박판의 열응력 파손에 대한 진동 활용 비파괴평가)

  • Lee, Sung-Hyuk;Choi, Nak-Sam;Lee, Jong-Ki
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.5
    • /
    • pp.347-355
    • /
    • 1999
  • A feasibility investigation on vibration-based nondestructive evaluation of thermal stress-induced micro-failure in the free edge region of thin composite laminates(1mm thick) has been carried out. The failure occurrence and damage zone, which were predicted by the three-dimensional finite-element thermal stress analysis, were observed using the ultrasonic C-scan and optical microscopy. Analysis of the vibration spectrum measured from the laminate beam specimens by the vibration sweep test exhibited that the obvious decrease in resonancy frequency and some considerable increase in damping factor were associated with the micro-failure formation. The vibration technique utilizing short beam and high resonant frequency was found to be very sensitive to the thermal stress-induced damage in the thin laminates.

  • PDF

GA-Based Optimal Design for Vibration Control of Adjacent Structures with Linear Viscous Damping System (선형 점성 감쇠기가 장착된 인접구조물의 진동제어를 위한 유전자 알고리즘 기반 최적설계)

  • Ok, Seung-Yong;Kim, Dong-Seok;Koh, Hyun-Moo;Park, Kwan-Soon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.1 s.53
    • /
    • pp.11-19
    • /
    • 2007
  • This paper proposes an optimal design method of distribution and capacities of linear viscous dampers for vibration control of two adjacent buildings. The previous researches have dealt with suboptimal design problem under the assumption that linear viscous dampers are distributed uniformly or proportionally to the sensitivity of the modal damping ratio according to floors, whereas this study deals with global optimization problem in which the damping capacities of each floor are independently selected as design parameters. For this purpose, genetic algorithm to effectively search multiple design variables in large searching domains is adopted and objective function leading to the global optimal solutions is established through the comparison of several optimal design values obtained from different objective functions with control performance and damping capacity. The effectiveness of the proposed method is investigated by comparing the control performance and total damping capacity designed by the proposed method with those of the previous method. In addition, the time history analyses are performed by using three historical earthquakes with different frequency contents, and the simulation results demonstrate that the proposed method is an effective seismic design method for the vibration control of the adjacent structures.

Analysis of Frequency Response Characteristics in Optical Microphone (광 마이크로폰의 주파수 응답특성 분석)

  • Yeom, Keong-Tae;Kim, Kwan-Kyu;Heh, Do-Geun;Kim, Yong-Kab
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.6
    • /
    • pp.8-15
    • /
    • 2008
  • In this paper, in order to analyze property of frequency response in optical microphone, system was implemented. The capacitance microphone and fiber-optic transmission path type fiber-optic microphone (FOM) have weaknesses in directivity, size, weight, and price. However suggested optical microphone can be constituted by cheap devices, so it has many benefits like small size, light weight, high directivity, etc. Head part of optical microphone which is suggested in this paper is movable back and forth by sound pressure with the attached reflection plate. Operating point is determined by measuring the respond characteristics and choosing the point on which has maximum linearity and sensitivity while changing the distance between optical head and vibrating plate. We measured the output of the O/E transformed signal of the optical microphone while frequency of sound signal is changed using sound measurement/analysis program, Smaart Live and USBPre, which are based on PC, and compared the result from an existing capacitance microphone. The measured Optical microphone showed almost similar output characteristics as those of the compared condenser microphone, and its bandwidth performance was about 300[Hz]-3[kHz] at up to 3 [dB].

A Study on the Optical Loss Variation of Optical Fiber Splicing Part due to Environment (광섬유 접속부의 환경 변화에 따른 손실변화 연구)

  • Yoo, Kang-Hee;Kim, Young-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.2
    • /
    • pp.349-357
    • /
    • 2007
  • The most sensitive part of the installed optical fiber fable is the optical loss variation of the splicing part according to the environmental changes. This paper presents the details of the experimental results of the external environmental changes on optical loss, such as bending, temperature variation, temperature variation after water osmosis and vibration. Through the bending test of optical fiber, rapid increase of optical loss was measured within the radius of 30mm. The result of optical loss variation within the temperature range of $-30^{\circ}C{\sim}60^{\circ}C$ is less than 0.02dB. It was confirmed that the maximum optical loss increased up to 0.2dB in case of water osmosis within the temperature range of $-40^{\circ}C{\sim}80^{\circ}C$. There is small optical loss variation of 0.01dB under the 1mm vibration test. The experimental results of this paper can be used as the reference data for the design of the optical fiber cable splicing enclosure to protect the optical loss variation due to environmental changes.