가스터빈 엔진의 높은 신뢰성과 운용비의 최소화는 제작자나 사용자 모두에게 중요한 문제이며, 정성적, 정량적 성능저하 예측을 포함한 다양한 성능진단기법이 시도되고 있다. 탈설계점에서의 성능진단은 설계점 성능진단에 비해 학습, 또는 처리해야 할 데이터 규모가 방대함에 따라 예측오차와 수렴도면에서 해결되어야 할 문제점들을 안고 있다. 따라서 이를 위해 본 연구에서는 가스경로해석 기법을 적용한 엔진성능진단코드를 개발하였으며, 이를 스마트 무인기용 터보축 엔진에 적용하여 설계점 및 고도 변화에 따른 탈설계점 영역에 대하여 단일 성능저하를 정량적으로 예측하여 GSP를 통한 예측결과와 비교하였다.
최근 개발되는 엔진 진단 시스템들은 현장에서 일하는 엔진 정비사들이 이들 시스템들의 복잡성, 비실용성, 공학적 이해부족으로 사용하기가 매우 어렵다. 따라서 실용성 있는 엔진 진단시스템이 요구된다. 본 연구는 작동중인 온라인 성능진단 자료와 기본엔진 성능모델에 의해 계산된 초기고장이 없는 엔진 성능자료와의 비교를 통한 소형엔진의 실용적 성능진단 시스템 개발에 관한 것이다. 또한 제안된 성능진단 시스템은 성능이 저하되거나 고장이 난 엔진으로 간주되는 작동 중 엔진과 고장이 없는 엔진으로 간주되는 기본 엔진 성능모델 사이의 구성품 성능특성을 비교함으로서 가스경로 구성품의 온라인 진단을 확인할 수 있다. 개발된 상태진단시스템은 실제 적용을 용이하게 하기위해 SIMULINK와 LabVIEW프로그램을 이용하여 사용자조건의 GUI형 프로그램으로 작성하였다.
파킨슨병은 뇌의 흑질 영역에서 도파민계 신경이 파괴되는 질병으로 알츠하이머병과 함께 대표적인 퇴행성 뇌 질환이다. 현재까지 병을 완치시킬 수 있는 치료법은 없지만 병의 진행을 완화시킬 수 있는 치료법이 존재하기 때문에 병의 진단이 굉장히 중요하다. 파킨슨병을 진단하기 위한 과거의 연구는 대부분 단일 바이오마커를 이용한 것으로 이러한 방법은 파킨슨병 환자를 높은 정확도로 진단할 수 있지만 정상인에 대한 진단은 상대적으로 낮은 성능의 한계성이 존재한다. 따라서 본 연구에서는 생화학적 바이오마커인 뇌척수액 내의 ${\alpha}$-synuclein 단백질 수치와 영상학적 바이오마커인 확산 텐서 영상의 여러 모수들을 결합하여 특징으로 사용하는 파킨슨병 진단 모델을 개발하고 성능을 평가하였다. 진단을 위해 개발된 모든 모델은 10-fold cross validation 성능평가에서 정확도가 최고 91.3%의 높은 성능을 보였으며, test 성능평가에서는 확산 텐서 영상의 모수들 중 FA와 ${\alpha}$-synuclein 단백질 수치가 결합된 모델, MO와 ${\alpha}$-synuclein 단백질 수치가 결합된 두 모델에서 최고 72%의 정확도 성능을 보여 파킨슨병의 진단에 유용하게 사용될 수 있는 가능성을 제시하였다. 파킨슨병의 진단을 위해 개발된 모델의 영상학적 특징 벡터를 통하여 파킨슨병 환자와 정상인의 신경섬유 경로의 특징을 분석하였다.
태양광 발전소에 대한 성능을 평가하기 위해서는 IEC 61724-1에 적합한 계측장치를 설치하고 데이터를 수집하여 평가하는 것이 일반적인 방법이다. 본 논문에서는 태양광발전소 현장에서 DC 어레이 성능을 평가하기 위한 방법을 제시하였다. 측정 일사량과 같은 환경정보 값과 태양광 DC 어레이 전압-전류 특성 곡선을 이용해 일사량에 따른 출력모델 식을 도출하였다. 도출된 모델 식은 태양전지 셀의 종류나 버스바에 따라서 차이가 발생되므로 기존의 태양전지 셀 등가회로 수식을 반영한 시뮬레이션 모델식이 적절히 변경되어야 함을 실험을 통해 검증하였다. 주기적인 진단 평가를 실시하지 않는 국내외 태양광 발전소는 성능저하가 발생된 상태로 운전되는 경우가 다수 일 것이다. 대부분의 관제모니터링을 시스템은 미쓰매칭 손실 평가분석이 불가능하며 운전상태 모니터링 하는 시스템이 대부분이다. 이에 태양광 발전소의 효율적 운영을 위해서는 현장진단 장치를 이용한 주기적 성능진단 평가나 발전소 데이터의 손실평가 분석 기술의 개발이 필요할 것이다.
심전도의 압축은 시스템의 처리 속도를 높일 뿐만 아니라 신호의 전송량, 장기적인 기록 데이터 저장량을 줄일 수 있다. 본 논문에서는 기존의 심전도 데이터의 손실 혹은 무 손실 압축 알고리즘에 대한 성능 평가가 엔지니어의 관점에서 PRD(Percent RMS Difference)와 CR(Compression Ratio)을 측정하였다면 심전도를 진단하는 진단자의 관점에서 압축의 성능 평가에 대한 연구를 하였다. 일반적으로 심전도 데이터의 압축이 진단에 영향을 미치지 않게 하기위해서는 압축 후 복원된 PQRST파의 위치, 길이, 진폭, 파의 형태 등 진단에 필요한 것들이 손상되어선 안 된다. 대표적인 심전도 압축 알고리즘 AZTEC은 기존의 성능평가에 그 효율성이 검증되었지만 진단자의 관점에서 새로운 성능평가를 제시한다.
PFCM-R 알고리즘을 적용한 기존의 반려견 진단 방법에서는 클러스터링에서 사용되는 파라미터 값을 경험적으로 설정하고 견주가 입력하는 증상들 사이에서 관련성이 낮은 증상이 필터링 되지 않아서 질병의 도출 성능을 저하시키는 원인이 된다. 따라서 본 논문에서는 노드 활성 함수를 적용하여 증상간의 관련성이 적은 증상 데이터를 제거하여 학습 데이터를 구성한 후, 연상 메모리 알고리즘에 적용하여 반려견의 질병에 대한 진단 성능을 개선시키는 하이브리드 기반 다층 학습 구조를 제안하여 반려견 진단에 적용한다. 기존의 PFCM-R 알고리즘 진단 방법과 제안된 하이브리드 다층 구조 진단 방법을 비교분석한 결과, 기존의 방법보다 제안된 방법이 입력된 증상들에 대해서 기존의 방법보다 관련성이 있는 질병 도출 성능이 23.7%가 개선되었다.
악성 흉수의 진단은 세포학적 검사로 암세포를 확인하는 것이 필수적이며 진단율은 50~80%로 나타난다. 양성자 단층 촬영은 비침습적으로 암 병기를 평가하는 유용한 방법이다. 하지만 암이 아닌 다른 원인으로 인한 포도당 대사로 인하여 양전자 단층 촬영만으로 악성 흉수를 진단하는 데 어려움이 있다. 악성 흉수 자동 진단 모델은 암세포를 진단하는데 있어서 보조적인 역할이 가능하다. 이에 따라 본 연구는 컨볼루션 신경망 기반의 딥러닝 모델을 개발하여 악성 흉수 진단 성능을 확인하고 진단의 보조적 목적으로써 딥러닝의 사용 가능성을 확인하고자 하였다. 결과적으로 모델 전반적으로 accuracy 0.7~0.86의 높은 성능을 보였다. 본 연구의 결과를 통해 실제 의료 환경에서 악성 흉수를 진단하는데 딥러닝 모델이 보조적인 역할을 할 수 있을 것으로 기대된다.
현재 대부분의 차량은 사용자에게 차량 성능에 관한 일부 정보만을 제공하기 때문에 차량의 안전 운행 및 유지 보수에 어려움이 따른다. 이러한 문제점 등을 해결하기 위하여 최근에 차량 제어 및 진단시스템에 대한 다양한 방식의 연구개발이 진행되고 있지만, 시스템 구현의 복잡성, 성능진단의 신뢰성 저하, 오동작 등 여러 가지 문제점이 나타나고 있다. 본 논문에서는 위에서 언급한 문제점을 해결할 목적으로 위성 원격측정기술을 이용하여 차량 성능을 실시간으로 측정하고 분석하여 차량 성능의 신뢰성을 진단할 수 있는 차량 성능진단시스템에 관한 개념 설계를 수행하였다. 본 연구에서 도출된 개념 설계 결과는 향후 차량 성능진단시스템 구현을 위한 상세설계의 기반 데이터 및 자료로 이용될 것이다.
일본에서는 경제의 고도 성장기인 1960년대에서 1970년대의 중반에 걸쳐서 대량의 전력설비가 설치되고 1980년대에 들어서는 보다 고도의 기술을 이용한 고성능의 대용량 전력기기.시스템이 도입되어 현재에 이르고 있다. 일본의 9개 전력회사의 수요 최대 전력은 1995년 여름에 약 1억 6천만 kW에 달하였다. 이와 같이 대용량에서 고성능의 전력설비를 고신뢰도로 효율 좋게 운용하기 위해서 일본에서는 다음과 같이 중점을 두고 전력설비의 절연진단기술의 개발을 행해 오고 있다. 1) 절연열화기구의 해명과 열화판정기준의 명확화 2) 절연진단계측에 있어서 노이즈의 저감과 제거 3) 절연열화진단의 on-line화 4) 절연잔존수명추정법의 개발 5) 절연진단에 컴퓨터 AI의 이용 절연진단은 그림 1에 나타낸 바와 같이 전력설비의 예방보전 중의 일부분으로서 위치하고 있다. 그림 1에 있어서 전력설비의 절연체에 가해지는 전기적, 열.기계적, 환경적 스트레스의 종류와 크기, 또 그것들에 의한 절연열화의 양상은 전력설비의 종류 즉 회전기, 정지기, 선로 각각에 따라 다르다. 따라서 다음에 전력설비의 종류별로 일본에 있어서 절연열화 진단기술의 현황과 연구개발 동향을 소개한다.
생산 공정에서 발생하는 비정상적인 이상 (fault)의 진단 (diagnosis)은 고품질의 제품을 생산함에 있어 필수적이라 할 수 있다. 회분식 공정 (batch process)과 같이 부가가치가 큰 반도체나 의약품 등의 첨단 제품을 생산하는 공정에서는 더욱 실시간 진단의 역할이 커지고 있다. 본 연구에서는 회분식 공정으로부터 얻은 측정 데이터와 비선형 분류(nonlinear classification)에 기초한 실시간 이상 진단 체계에 있어서 변수선택과 미래값 추정 기법이 진단 성능에 미치는 영향을 평가한다. 공정 변수 중 진단에 필수적이며 기여도가 높은 변수만을 선택하여 진단 모델 (diagnosis model)을 구성함으로써 진단 성능의 향상을 기대할 수 있다. 본 연구에서는 여러 변수선택 (variable selection) 기법들의 진단 성능을 비교 평가한다. 또한, 현재 진행 중인 회분식 조업 데이터는 종료되기 이전에는 진단에 필요한 전체 데이터를 얻을 수 없으므로 현재 시점에서 측정되지 못한 미래 측정값 (future observations)이 추정되어야 한다. 미래값 추정방법들의 선택이 변수선택과 분류기반 진단 관점에서 진단 성능에 어떻게 영향을 주는지 평가한다. 폴리염화비닐 회분식 공정에 대한 사례 연구를 수행하여 최적의 변수선택과 미래값 추정방법을 도출하였다. 변수선택 방법에 따라 최대 21.9%와 13.3%의 성능 향상을 보였으며 미래값 추정방법에 따라서는 최대 25.8%와 15.2% 향상됨을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.