• Title/Summary/Keyword: 직접 전단 시험

Search Result 278, Processing Time 0.023 seconds

Undisturbed Sampler for Characterizing the Behaviour of Weathered Granite Residual Soils (화강풍화토의 거동 특성 규명을 위한 비교란 시료채취기 개발)

  • 정순용;이승래
    • Geotechnical Engineering
    • /
    • v.13 no.6
    • /
    • pp.13-24
    • /
    • 1997
  • In Korea, granite is abundant and occupies around two-thirds of the country's ground. Bven though weathered granite residual soils are widely distributed, undisturbed sampling of this soil is extremely difficult because of the particultate structure. This difficulty has kept away the researchers from investigating !he deformational characteristics of weathered granite residual soil. Thus, a special undisturbed sampling device was developed and undisturbed samples were prepared for triaxial compression (TX), resonant column(RC), and torsional shear (75) tests. Local deformation transducer (LDT) was fabricated for internal strain measurements during TX tests. Both undisturbed samples and statically compacted samples of same density were tested by using TX with LDT, RC, and 75 test equipments. The behaviour of statically compacted specimens was almost the same as that of undisturbed samples in the strain ranges below 1 percent. The stiffness and strength decreased with increasing degree of weathering. In case of undisturbed specimens, strains at failure are widely varied from 2 percent to 11 percent, and planes of failure are irrelevant to the angle of internal friction due to the inhomogeneous nature.

  • PDF

Effects of Ar/N2 Two-step Plasma Treatment on the Quantitative Interfacial Adhesion Energy of Low-Temperature Cu-Cu Bonding Interface (Ar/N2 2단계 플라즈마 처리에 따른 저온 Cu-Cu 직접 접합부의 정량적 계면접착에너지 평가 및 분석)

  • Choi, Seonghun;Kim, Gahui;Seo, Hankyeol;Kim, Sarah Eunkyung;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.2
    • /
    • pp.29-37
    • /
    • 2021
  • The effect of Ar/N2 two-step plasma treatment on the quantitative interfacial adhesion energy of low temperature Cu-Cu bonding interface were systematically investigated. X-ray photoelectron spectroscopy analysis showed that Ar/N2 2-step plasma treatment has less copper oxide due to the formation of an effective Cu4N passivation layer. Quantitative measurements of interfacial adhesion energy of Cu-Cu bonding interface with Ar/N2 2-step plasma treatment were performed using a double cantilever beam (DCB) and 4-point bending (4-PB) test, where the measured values were 1.63±0.24 J/m2 and 2.33±0.67 J/m2, respectively. This can be explained by the increased interfacial adhesion energy according phase angle due to the effect of the higher interface roughness of 4-PB test than that of DCB test.

Blade Type Field Vs Probe for Evaluation of Soft Soils (연약지반 평가를 위한 블레이드 타입 현장 전단파 속도 프로브)

  • Yoon, Hyung-Koo;Lee, Chang-Ho;Eom, Yong-Hun;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.12
    • /
    • pp.33-42
    • /
    • 2007
  • The assessment of shear wave velocity($V_s$) in soft soils is extremely difficult due to the soil disturbances during sampling and field access. After a ring type field $V_s$ probe(FVP) has been developed, it has been applied at the southern coastal area of the Korean peninsular. This study presents the upgraded FVP "blade type FVP", which minimizes soil disturbance during penetration. Design concerns of the blade type FVP include the tip shape, soil disturbance, transducers, protection of the cables, and the electromagnetic coupling between transducers and cables. The cross-talking between cables is removed by grouping and extra grounding of the cables. The shear wave velocity of the FVP is simply calculated by using the travel distance and the first arrival time. The large calibration chamber tests are carried out to investigate the disturbance effect due to the penetration of FVP blade and the validity of the shear waves measured by the FVP. The blade type FVP is tested in soils up to 30m in depth. The shear wave velocity is measured every 10cm. This study suggests that the upgraded blade type FVP may be an effective device for measuring the shear wave velocity with minimized soil disturbance in the field.

Effect of Immersion and High Temperature on Shear Strength of Cemented Sand (수침 및 고온이 고결모래의 전단강도에 미치는 영향)

  • Moon, Hong Duk;Hwang, Keum-Bee;Kim, Tae-hun;Park, Sung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.7
    • /
    • pp.17-30
    • /
    • 2023
  • This study investigates the impact of water immersion and high temperature on the shear strength of cemented sand through direct shear tests. Standard Jumunjin sand was used and cemented with binders, such as ultra-rapid hardening cement and an epoxy aqueous solution. The binder was mixed at concentrations of 4%, 8%, or 12%. Subsequently, cylindrical cemented specimens with a diameter of 64 mm and height of 25 mm were produced using compaction. The curing period was three days, and the specimens were cured under dry air, immersion, and heating conditions. The heating condition involved subjecting the immersed specimens to a microwave oven three times for three minutes to achieve an internal temperature of approximately 90℃. Regardless of the binder type, the cohesion of the cemented sand increased with higher binder content, whereas the internal friction angle exhibited a slight increase or decrease. Compared with ultra-rapid hardening cemented sand, epoxy-cemented sand displayed an average cohesion that was five times higher and an internal friction angle that was 10° higher. Overall, irrespective of binder type, the shear strength decreased during water immersion and increased during heating. Notably, the epoxy-cemented sand exhibited a three-fold increase in cohesion and a more than 20° increase in the internal friction angle during heating.

Characteristics of Strength Change of Clay Mixing Eco-friendly Soil Binder and Microorganism (친환경 고결제와 미생물을 혼합한 점성토의 강도 변화특성)

  • Kim, Taeyeon;Park, Jongseo;Lee, Bongjik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.10
    • /
    • pp.15-22
    • /
    • 2017
  • The soil improvement method so far has been developed with an emphasis on enhancing the strength of the ground. A soil improvement method using a excellent cementitious stabilizer in economical efficiency and handling property is mainly used. The soil improvement method using cementitious stabilizer is effective but environmental and human harmful substances are detected and environmental problems such as carbon dioxide emission and groundwater pollution are pointed out. Therefore, as part of an alternative method capable of solving such problems, researches on the soil improvement method incorporating biological technology are being actively carried out. This study was conducted to investigate the characteristics of strength change when mixed with environmentally friendly soil binder and microorganism in clay, and it was analyzed by uniaxial compression test, direct shear test, SEM, XRD. As a results of the test, we confirmed the cementation caused by microbially induced calcite precipitation and the strength increase enhancement by it.

A study on chemical bonding characteristics of the interface between curved FRP panels for consecutive structural assembly (곡면 FRP 패널 부재 연속시공을 위한 연결부 화학적 접합 특성에 관한 연구)

  • Lee, Gyu-Phil;Shin, Hyu-Soung;Jung, Woo-Tai
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.1
    • /
    • pp.79-91
    • /
    • 2012
  • A curved fiber reinforced polymer (FRP) panel is produced with a certain width depending on allowances of manufacturing processes and facilities. An targeted arch-shaped structure could be built by sequential connection of series of the FRP panels. The connection manner between the FRP panels could be given by chemical treatment, mechanical treatment and hybrid method. Among those, the connection between the panels by chemical treatment is commonly adopted. Therefore, For an optimized design of the connected part between FRP pannels, a number of direct shear tests have been undertaken in terms of a number of parameters: surface treatment conditions, bonding materials, etc.. As results, surface grinding condition by sand paper or surface treatment by sand blasting appear properly acceptable methods, and epoxy and acryl resins are shown to be effective bonding materials for the purpose in this study.

Engineering Characteristics of Crushed Rock for Foundation and Backfill Materials of a Conduit (관거의 기초 및 뒷채움재로 활용하기 위한 석분의 공학적 특성)

  • Moon, Hongduk;Kim, Daeman
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.6
    • /
    • pp.67-73
    • /
    • 2006
  • In this study, basic physical tests and mechanical tests of crushed rock were performed in order to investigate the field application of crushed rock as substitute materials of sand that is commonly being used as foundation and backfill materials of sewer conduit. Particle-size distribution curve of crushed rock is similar to sand and also it is well-graded soil than common sand. Maximum dry unit weight in proctor compaction test for crushed rock is higher than the values of common sand. So we can estimate that the crushed rock has advantages in workability than sand for the backfill compaction after construction of sewer conduit. When we investigate the results of direct shear test and triaxial compression test on the crushed rock, it has a similar value of shear strength parameters to sand at the same stress state and as time goes by, it tends to increase the unconfined compression strength. But, because the strength reaches at the constant value after 6~7 days, we expect that it can absorb the lateral strain of flexible conduit well. All the above experimental results just proves that crushed rock can substitute for sand as backfill materials and foundation of sewer conduit.

  • PDF

Assessment of Zeolite Soil Mixture as Adsorptive Fill Material at Industrial Zones (산업단지에서의 흡착 성토재로써 제올라이트 토양혼합물의 특성평가)

  • Kwon, Patrick Sun;Rahim, Shahrokhishahraki;Park, Jun Boum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.203-209
    • /
    • 2019
  • A number of industrial zones in South Korea were reported contaminated by heavy metals. Such contamination could cause severe damage to the subsurface environment including soil and groundwater. The treatment of zeolite mixing with soil at the bottom of such industrial zones might prevent, or at least reduce the damage of contamination by adsorption of the heavy metals from the leakage. However, such mixtures should maintain the proper bearing capacity as a foundation fill material from the geotechnical point of view at the same time. To investigate the effect of mixtures of zeolite with local soils for the adsorption of heavy metals (Zn, Pb) and sustainability of bearing capacity, adsorption isotherm tests and direct shear test with compaction tests were performed. Results showed that the mixing zeolite with local soils effectively reduces the spreading of the heavy metal contamination when maintaining its proper geotechnical properties as a fill material of industrial zones.

A Study on the Performance Evaluation Method of Warm-mix Asphalt Mixture by the Analysis of Bonding Properties between Asphalt Binder and Aggregate (중온 아스팔트 혼합물의 성능 평가를 위한 아스팔트 바인더와 골재 사이의 접착물성분석 방법에 관한 연구)

  • Yoo, In Sang;Cho, Dong-Woo;Hwang, Sung Do;Rhee, Suk Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6D
    • /
    • pp.803-810
    • /
    • 2011
  • The public interest of global warming and energy shortage is gradually increased, and the related industries also have become interested in developing eco-friendly material and technology. Warm-mix asphalt (WMA) is a result of the developments to alleviate global warming and energy problems. This WMA is produced at lower temperatures than the temperature at which hot mix asphalt (HMA) is produced. Because most tests in Superpave are developed only for the performance and maintenance of HMA produced by hot temperatures, it is difficult for the tests to identify properly the material properties and then evaluate the performances between HMA and WMA. This study deals with the development of a new protocol to differentiate HMA and WMA performance, and especially the interfacial properties between asphalt and aggregate are targeted as the performance indicator; thus, an evaluation method and guideline are suggested. The concept and idea of the test method applied in this study were modified from the DSR moisture damage test protocol. In addition, TSR test was performed to affirm the relation between the asphalt-aggregate interface and the asphalt-aggregate mixture performances. The followings are the results of this study. Shear stress at 85% linear visco-elastic complex modulus (LVE $G^*$) can be a better parameter than LVE $G^*$, which can assess the interfacial or bonding performance between asphalt and aggregate. Moreover, measuring the bonding performance in thinner film thicknesses will be a better way to evaluate the real and field situation between asphalt and aggregate. The interfacial properties' criteria to apply the newly developed test and parameter should be developed, after the asphalt mixture criteria relating to the interfacial properties are completed.

A Study on Crushing and Engineering Characteristics Caused by Compaction of Recycled Aggregates (다짐으로 인한 순환골재의 파쇄 및 공학적 특성에 관한 연구)

  • Park, Sung-Sik;Chen, KeQiang;Lee, Young-Jae;Moon, Hong-Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.12
    • /
    • pp.35-44
    • /
    • 2017
  • A large amount of recycled aggregates was produced and crushed from old buildings and pavements. In this study, when these aggregates are re-used in subbase or subgrade materials in near construction sites, their engineering characteristics caused by crushing are investigated in terms of permeability and shear strength. Three different sizes of aggregates (31.5-45.0 mm, 19.0-31.5 mm, 9.5-19.0 mm) and their mixtures, a total of 7 types of aggregates were used in compaction tests (modified D and B methods). After compaction tests, aggregates were sieved and analyzed with four different breakage factors ($B_{15}$, $C_c$, $B_{10}$, $B_r$). The D compaction method gave 2.0-8.0 times more crushable than B compaction method. The breakage factors for the largest size aggregate was 1.4-3.0 times higher than those of the smallest size aggregate. For aggregates with 5.6-9.5 mm sizes, the samples were prepared with $B_{15}$ of 1, 3, 10, 20, 30, 50, 60, and 70 for permeability and direct shear tests. As $B_{15}$ increased, the hydraulic conductivity decreased up to 1/22 for $B_{15}=50$. As $B_{15}$ increased from 1 to 50, the peak friction angle increased from $46.1^{\circ}$ to $54.5^{\circ}$. On the other hand, the friction angle decreased after $B_{15}=60$.