• Title/Summary/Keyword: 직접 레이저 소결

Search Result 6, Processing Time 0.017 seconds

Implant-supported prosthetic rehabilitation for the edentulous maxilla using the additive manufacturing technology: A case report (레이저 적층 제조 기술을 이용한 상악 무치악 환자의 임플란트 고정성 보철 수복 증례)

  • Kim, Hee-Kyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.56 no.2
    • /
    • pp.173-178
    • /
    • 2018
  • The direct metal laser sintering (DMLS) technique would be promising for the full-arch implant-supported restorations due to reduced cost and manufacturing time without potential human errors and casting defects. The aims of this case report were to describe the successful outcome of an implant-supported fixed dental prosthesis in the edentulous maxilla by using the DMLS technology and computer-aided design and computer-aided manufacturing (CAD/CAM) monolithic zirconia crowns, and to describe its clinical implications. A healthy 51-year-old Korean woman visited Seoul National University Dental Hospital and she was in need of a rehabilitation of her entire maxilla due to severe tooth mobility. In this case, all maxillary teeth were extracted and an implant-supported fixed dental prosthesis was fabricated that involved a cobalt-chromium (Co-Cr) framework with the DMLS technique and CAD/CAM monolithic zirconia crowns. Six months after delivery, no distinct mechanical and biological complications were detected and the prosthesis exhibited satisfactory esthetics and function. In this case report, with the DMLS system, the three-dimensional printed prosthesis was created without additional manual tooling and thus, reliable accuracy and passive fit were obtained.

The Application of Computer Simulation, Industrial CT and DLS RP for the rapid development of casting pilot models (신속한 주물 시제품 개발을 위한 전산모사 기술과 산업용 단층촬영기 및 쾌속표형기의 적용)

  • Yoo S.M.;Lim C.H.;Cho I.S.;Choi J.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.195-196
    • /
    • 2006
  • Direct laser sintering (DLS) technology for the resign coated sand is one of attractive technologies to produce molds and cores for the foundry industry rapidly and cost effectively. The objective of this case study is to develop casting pilot models using computer simulation technology, DLS RP machine and industrial computed tomography. The proposed casting design was verified by the Z-Cast software in the fields of fluid flow and solidification during the casting process. Casting parts with aluminum alloy using the post-curing treated sand moulds and cores are accurate to dimension and defect free.

  • PDF

Study on the Dimensional Characteristics of the Direct Metal Laser Sintering in Additive Manufacturing Process (DMLS 적층제조의 치수 특성에 관한 연구)

  • Jung, Myung-Hwi;Kong, Jeong-Ri;Kim, Hae-Ji
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.7
    • /
    • pp.1-9
    • /
    • 2022
  • Peeling and dimensional deformation that occur during a manufacturing process are accompanied by an increase in the manufacturing cost and production time caused by manufacturing defects. In order to solve this problem, it is essential to predict risk factors at the design stage through computational analysis of the additive manufacturing process and to control shape distortion due to residual stress. In this study, the dimensional characteristics were improved by applying the distortion compensation design through computational analysis to minimize the distortion occurring in the DMLS(Direct Metal Laser Sintering) method of the metal additive manufacturing process.

Measurement of the intrinsic speed of sound in a hot melt ceramic slurry for 3D rapid prototyping with inkjet technology (3차원 잉크젯 쾌속 조형법을 위한 세라믹 상변화 잉크의 음속측정)

  • Shin, Dong-Youn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.892-898
    • /
    • 2008
  • 3D rapid prototyping is the manufacturing technology to fabricate a prototype with the data stored in a computer, which differs from conventional casting technology in terms of an additive process. Various 3D rapid prototyping techniques such as stereolithograpy. fused deposition modeling. selective laser sintering, laminated object manufacturing have been developed but among them, 3D inkjet printing has a unique feature that materials could be jetted to directly form the body of a prototype, which could be a finished product functionally and structurally. However, this needs ink with a high solid content, which tends to increase the dynamic viscosity of ink. The increase of ink viscositytends to restrict the jettable range of ink and hence the jetting conditions should be optimized. The intrinsic speed of sound in a hot melt ink with ceramic nanoparticles dispersed is one of key components to determine the jettable range of ink. In this paper, the way to measure the intrinsic speed of sound in a hot melt ceramic ink is proposed and its influence on the jetting condition is discussed.

Comparative evaluation of marginal and internal fit of three-unit Co-Cr frameworks fabricated by metal milling and direct metal laser sintering methods (금속 밀링과 직접 금속 레이저 소결 방식으로 제작한 3본 코발트-크롬 구조물의 변연 및 내부 적합도 비교 평가)

  • Ahn, Jae-Seok;Lee, Jung-Hwan
    • Journal of Technologic Dentistry
    • /
    • v.42 no.2
    • /
    • pp.81-89
    • /
    • 2020
  • Purpose: This in vitro study was conducted to evaluate the marginal and internal fit of three-unit Co-Cr frameworks fabricated by computer-aided metal milling and direct metal laser sintering(DMLS) systems in comparison to conventional casting method. Methods: Three-unit Co-Cr frameworks were fabricated by conventional wax up with casting(CWC), computer-aided metal milling(MM) and direct metal laser sintering(DMLS)(n=10 each). The marginal and internal fit of specimens were examined using a light-body silicone impression material. The thickness of light-body silicone was measured at eight reference points each, divided in the mesio distal and bucco lingual directions. All measurements were conducted by a stereomicroscope. Digital photos were taken at 150× magnification and then analyzed using a measurement software. The Kruskal-Wallis test and Bonferroni correction were used for analyzing the results. Results: The mean(SD) is ㎛ for fabrication methods, the mean marginal fit were recorded respectively, DMLS 39(27), followed by CWC 63(38), MM 220(128). and the mean internal fit CWC 95(47), DMLS 116(49), MM 210(152). In addition, the largest gap was found in the occlusal surface area among the internal measurement areas of all groups. Conclusion: As a result, the direct metal laser sintering method showed better marginal and internal fit than the metal milling method. The marginal and internal fit were statistically different according to the three fabrication methods(p<0.001). Except the MM group, the marginal fit of the CWC and DMLS groups was below the clinical standard of 120 ㎛. Based on the results of this study, it can be applied to clinical use in the future.