• Title/Summary/Keyword: 직접전단 시험모델

Search Result 41, Processing Time 0.027 seconds

Reduction of Shear Strength of Railway Roadbed Materials with Freezing-thawing Cycle (동결융해 반복에 따른 철도노반재료의 전단강도 변화)

  • Choi, Chan yong;Shin, Eun chul;Kang, Hyoun Hoi
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.7
    • /
    • pp.13-21
    • /
    • 2011
  • In seasonal frozen areas with climatic features, which have a temperature difference in the winter and thawing season, changes of mechanical properties of the soil in the zone could be seen between the freezing and thawing surface. In particular, in soil with many fine particles, a softening of the roadbed usually occurs from frost and thawing actions. The lower bearing capacity is a rapidly progressive the softening of roadbed, and occurred a mud-pumping by repeated loading. In this study, the three kind of sandy soil with contents of fine particles were conducted by directly shear box test with the number of cyclic in freeze-thawing and the water content of soil. Subsequently, the relationship between the shear strength and freeze-thaw cycling time was obtained. The shear strength was decreased with the increase of the freeze-thaw cycling time. A shear stress deterioration of the soil with power function modal is proposal.

Correlation Analysis between Weight Ratio and Shear Strength of Fault Materials using Multiple Regression Analysis (다중회귀분석을 이용한 단층물질의 무게비와 전단강도의 상관성 분석)

  • Moon, Seong-Woo;Yun, Hyun-Soek;Kim, Woo-Seok;Na, Jong-Hwa;Kim, Chang-Yong;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.24 no.3
    • /
    • pp.397-409
    • /
    • 2014
  • The appearance of faults during tunnel construction is often difficult to predict in terms of strike, dip, scale, and strength, even though this information is essential in determining the strength of the surrounding rock mass. However, the strength and rock mass classification of fault zones are generally determined empirically on the construction site. In this study, 109 specimens were collected from fault of nine area throughout Korea, and direct shear tests were conducted and the particle distribution was analyzed to better characterize the fault zones. Six multiple regression models were established, using 97 of the specimens, to analyze the correlation between the shear strengths and weight rations of these fault materials. A verification of the six models, using the remaining 12 specimens, shows that in all of the models the coefficient of determination yielded $R^2{\geq}0.60$, with two models yielding $R^2{\geq}0.69$. These results provide useful information for determining the shear strength of fault materials in future studies.

A Simple Constitutive Model for Soil Liquefaction Analysis (액상화 해석을 위한 간단한 구성모델)

  • Park Sung-Sik;Kim Young-Su;Byrne P. M;Kim Dae-Man
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.8
    • /
    • pp.27-35
    • /
    • 2005
  • Several damages due to large displacement caused by liquefaction have been reported increasingly. Numerical procedures based on effective stress analysis are therefore necessary to predict liquefaction-induced deformation. In this paper, the fully coupled effective stress model called UBCSAND is proposed to simulate pore pressure rise due to earthquake or repeated loadings. The proposed model is a modification of the simple perfect elasto-plactic Mohr-Coulomb model, and can simulate a continuous yielding by mobilizing friction and dilation angles below failure state. Yield function is defined as the ratio of shear stress to mean normal stress. It is radial lines on stress space and has the same shape of Mohr-Columob failure envelope. Plastic hardening is based on an isotropic and kinematic hardening rule. The proposed model always causes plastic deformation during loading and reloading but it predicts elastic unloading. It is verified by capturing direct simple shear tests on loose Fraser River sand.

Refinement of Interpretation Method for Reliable Vs Profiling in Downhole Seismic Method (다운홀 시험에서 신뢰성 있는 전단파 속도 주상도 도출을 위한 해석 기법의 개선)

  • Bang, Eun-Seok;Kim, Dong-Soo;Yoon, Jong-Ku
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3C
    • /
    • pp.157-170
    • /
    • 2006
  • Downhole method is considered as giving a little unreliable Vs profile when the signal to noise ratio(S/N) is low and the travel time information is erroneous although it is economical and ease of operation. Direct method has been applied for obtaining adequate result in this case. But it is difficult to determine optimum result by using direct method which is subjective and considering straight ray path. Therefore, in this paper, Mean Refracted Ray Path Method(MRM) was proposed, which is automated and considering refracted ray path. Artificial travel time data adding some travel time error was generated by forward modeling based on Snell's Law and travel time data was also obtained from numerical signal traces using FEM modelling. Using these travel time data, reliability of MRM was verified in the manner of comparing the results determined by MRM with the model. Finally, proposed method was applied to the real field data and it was considered as improved method for obtaining the optimum result in downhole seismic method.

Numerical Simulation of Dynamic Soil-pile-structure Interaction in Liquefiable Sand (액상화 가능한 지반에 근입된 지반-말뚝-구조물 동적 상호작용의 수치 모델링)

  • Kwon, Sun-Yong;Yoo, Min-Taek;Kim, Seok-Jung
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.7
    • /
    • pp.29-38
    • /
    • 2018
  • Three-dimensional continuum modeling of dynamic soil-pile-structure interaction embedded in a liquefiable sand was carried out. Finn model which can model liquefaction behavior using effective stress method was adopted to simulate development of pore water pressure according to shear deformation of soil directly in real time. Finn model was incorporated into Non-linear elastic, Mohr-Coulomb plastic model. Calibration of proposed modeling method was performed by comparing the results with those of the centrifuge tests performed by Wilson (1998). Excess pore pressure ratio, pile bending moment, pile head displacement-time history according to depth calculated by numerical analysis agreed reasonably well with the test results. Validation of the proposed modeling method was later performed using another test case, and good agreement between the computed and measured values was observed.

Stability Analysis for Jointed Rock Slope Using Ubiquitous Joint Model (편재절리모델을 이용한 절리 암반 사면의 안정성 해석)

  • 박연준;유광호
    • Tunnel and Underground Space
    • /
    • v.8 no.4
    • /
    • pp.287-295
    • /
    • 1998
  • Limit equilibrium method is widely used for the stability analysis of soil slopes. In jointed rock slopes however, the failure of the slope is largely dependent upon the strength and deformability of the joints in the rock mass and quite often failure occurs along the joints. This paper describes the use of ubiquitous joint model for the stability analysis of the jointed rock slopes. This model is essentially an anisotropic elasto-plastic model and can simulate two sets of joint in arbitrary orientations. Validation of the developed with the factor of safety equal to unity was selected when the shape of the failure plane is assumed log spiral. Then the factor of safety of the rock slope having two perpendicular joint sets was calculated while rotating joint orientations. Rusults were compared with limit equilibrium solutions on soil slopes having equivalent soil properties when plane sliding was assumed. Developed model predicted the factor of safety of jointed rock slope in a reasonable accuracy when joint spacing is sufficiently small.

  • PDF

Elasto-plastic Joint Finite Element Analysis of Root-pile Using the Direct Shear Test Model (직접전단시험모델에 의한 뿌리말뚝의 탄소성조인트 유한요소해석)

  • Han, Jung-Geun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.4
    • /
    • pp.19-30
    • /
    • 2002
  • The stability of slope using root-pile like to the reinforcements is affected by the interaction behavior mechanism of soil-reinforcements. Through the studying on the interaction in joint of its, therefore, the control roles can be find out in installed slope. In study, the stress level ratio based on the insert angle of installed reinforcements in soil used to numerical analysis, which was results from the duty direct shear test in Lab. The maximum shear strain variation on the reinforcements was observed at insert angle, which was approximately similar to the calculated angle based on the equation proposed by the Jewell. The elasto-plastic joint model on the contact area of soil-reinforcements was presumed, the reinforced soil assumed non-linear elastic model and the reinforcements supposed elastic model, respectively. The finite element analysis of assumed models was performed. The shear strain variation of non-reinforced state obtained by the FEM analysis including elasto-plastic joint elements were shown the rationality of general limit equilibrium analysis for the slope failure mode on driving zone and resistance zone, which based on the stress level step according to failure ratio. Through the variation of shear strain for the variation of inserting angle of reinforcements, the different mechanism on the bending and the shear resistance of reinforcements was shown fair possibility.

A Study on Method of Evaluation for Deck Pavement (교면포장의 평가 방법 고찰)

  • Jo, Shin Haeng;Jo, Nam June;Jang, Jung Soon;Baek, Yu Jin;Kim, Nak Seok
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.86-86
    • /
    • 2011
  • 토목 기술의 발달로 장대교량이 증가함에 따라 교면 포장도 더 심각한 진동 및 충격, 기상조건에 노출되게 된다. 교면 포장은 차량의 주행의 편리성뿐 아니라 교량 구조물을 보호해야 하는 역할도 함께 수행하기 때문에 일반 토공부의 포장과 다른 성능을 필요로 한다. 교면 포장의 특수함을 감안하여 교면 포장의 품질을 평가하고, 설계와 적용시 반영 한다면 교량의 내구 연한 및 시공, 유지관리 비용을 절감 할 수 있을 것이다. 본 논문에서는 교면 포장에 요구되는 성능을 조사하고, 교면 포장 특히, 장대 교량 적용시 교면 포장의 성능 평가를 위한 평가 방법을 고찰하였다. 교면 포장의 가장 큰 구조적 특징은 교량의 진동과 휨에 의해 포장이 받게 되는 휨응력이다. 특히 교량의 장경간화에 따라 더 큰 진동과 변형을 경험하게 되는 교면 포장은 그에 따른 충분한 휨 추종성과 피로 저항성을 확보하여야 한다. 기존 토공부 포장에서는 실험이 간단한 원통형 공시체를 이용한 간접인장강도 모드의 실험으로 피로 성능을 평가하였으나, 교면 포장은 실제 거동 특성과 유사한 빔 피로 시험 모드가 보다 신뢰성이 높을 것으로 판단된다. 빔 피로시험 모드로는 3점, 4점, 5점 휨 피로 시험 모드가 있으며, 각각의 모드는 지지점의 개수, 재하점의 개수에 따라 다른 거동 특성을 평가 할 수 있다. 최근 개발된 5점 휨 시험의 경우 교량에서 발생하는 부(-)모멘트를 모사할 수 있어 보다 현실적인 검증이 가능할 것으로 예상된다. 이 외에도 실제 크기 모형을 이용하여 윤하중을 가하는 Full-scale 모델의 경우 비용과 시간이 많이 소요되는 단점이 있으나 가장 신뢰성이 높은 방법이라고 할 수 있다. 교면 포장은 교량구조부로 수분이 침투되는 것을 막아주는 역할을 하여야 하며, 특히 해상 교량의 경우의 염분과 겨울철 사용되는 제빙화학제는 콘크리트의 열화와 강구조물의 부식을 발생시키므로 교면 포장의 방수 성능 검토는 매우 중요한 역할을 한다. 일반 토공부 포장과 달리 교면 포장은 하부층이 대기에 노출되어 있기 때문에 겨울철에 더 낮은 온도로 포장체의 온도가 내려가게 되고, 온도가 떨어진 포장층은 스티프니스가 증감함에 따라 저온 균열의 발생확율이 높아지며, 휨추종성도 나빠질 가능성이 높다. 따라서 저온에서의 균열 저항성 및 스티프니스를 평가하는 것은 교면 포장 재료의 중요한 인자 중 하나이다. 포장과 포장 하부층의 접착은 포장층의 일체화된 거동을 할 수 있게 하기 때문에 내구성 향상에 중요하다. 특히 교량과 같이 진동과 변형이 많은 경우에 있어 포장 접착층의 성능은 포장과 교량 구조물의 파손에 더 큰 영향을 미치게 된다. 접착성능은 실내에서의 직접인장모드와 전단접착강도 시험 모드의 실험이 있으며, 현장에서 측정하는 Pull-off 실험 등이 있다. 최근에 교통량과 중차량의 증가와 더불어 교량이 장경간화 되어 가면서 평가방법과 기준을 과거보다 엄격하게 할 필요성이 있다. 하지만 현실은 교면포장에 대한 시방규정이 모호하기 때문에 본 논문에서 제시한 국내외의 다양한 평가방법을 통해 적절한 교면포장의 성능을 평가하고 교면포장의 거동특성에 대한 이해를 함으로써 보다 발전된 교량기술을 확보할 수 있을 것이다.

  • PDF

Behavior and Analysis of Laterally Loaded Model Pile in Nak-dong River Fine Sand

  • Kim, Young-Su;Seo
    • Geotechnical Engineering
    • /
    • v.14 no.3
    • /
    • pp.25-46
    • /
    • 1998
  • This paper shows that there are the results of a series of model tests on the behavior of single pipe pile which is subjected to lateral load in, Nak-dong River sand. The purpose of the present paper is to estimate the effect of Non-homogeneity. constraint condition of pile head, lateral load velocity, relative density, and embedded length of pile on the behavior of single pile. These effects can be quantified only by the results of model tests. Also, these are compared with the results of the numerical methods (p-y method, modified Vlasov method; new ${\gamma}$ parameter, Characteristic Load Method'CLM). In this study, a new ${\gamma}$ parameter equation based on the Vlasov method was developed to calculate the modulus of subgrade reaction (E. : nhz.) proportional to the depth. The p-y method of analysis is characterized by nonlinear behavior. and is an effective method of designing deep foundations subjected to lateral loads. The new method, which is called the characteristic load method (CLM). is simpler than p-y analysis. but its results closely approximates p-y analysis results. The method uses dimensional analysis to characterize the nonlinear behavior of laterally loaded piles with respect to be relationships among dimensionless variables. The modulus of subgrade reaction used in p-y analysis and modified Vlasov method obtained from back analysis using direct shear test (DST) results. The coefficients obtained from DST and the modified ones used for the prediction of lateral behavior of ultimate soil reaction range from 0.014 to 0.05. and from 0.2 to 0.4 respectively. It is shown that the predicted numerical results by the new method (CLM), p-y analysis, and modified Vlasov method (new parameter) agree well with measured results as the relative density increases. Also, the characteristic load method established applicability on the Q-Mnu. relationship below y/D=0.2.

  • PDF

Geotechnical Hybrid Simulation System for the Quantitative Prediction of the Residual Deformation in the Liquefiable Sand During and After Earthquake Motion (액상화 가능 지반의 진동 도중 및 후의 잔류 변형에 대한 정량적 예측을 위한 하이브리드 시뮬레이션 시스템)

  • Kwon, Young Cheul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1C
    • /
    • pp.43-52
    • /
    • 2006
  • Despite several constitutive models have been proposed and applied, it is still difficult to choose a suitable model and to estimate adequate analysis parameters. Furthermore, a cyclic shear behavior under the volume change caused by the seepage is more complex. None of the constitutive model is available at present in the expression of the cyclic behavior of soil under an additional volume change condition by seepage. Therefore, a new geotechnical hybrid simulation system which can control the pore water immigration was developed. The system enables a quantitative evaluation of the residual deformation such as lateral spreading and settlement caused by the liquefaction. The seismic responses in a one-dimensional slightly inclined multilayered soil system are taken into consideration, and the soils are governed by both equation of motion and the continuity equation. Furthermore, the estimation and the selection of the soil parameter for the representation of the strong nonlinearity of the material are not required, because soil behaviors under the earthquake motions are directly introduced instead of a numerical soil constitutive model. This paper presents the concept and specifications of the system. By applying the system to an example problem, the permeability effect on the seismic response during cyclic shear is studied. The importance of the volume change characteristics of sandy soil during and after cyclic shear is shown in conclusion.