• Title/Summary/Keyword: 직접염료

Search Result 54, Processing Time 0.029 seconds

반응성 염료 염색

  • Geigy, Ciba
    • Textile Coloration and Finishing
    • /
    • v.2 no.1
    • /
    • pp.44-67
    • /
    • 1990
  • 오늘날 셀룰로오스 염색은 단지 5가지의 염료들이 사용되고 있다. Table 1에서와 같이 황화염료 및 직접염료가 세계적으로 가장 보편적으로 사용되고 있다. 그러나 선진국에서는 지난 수년간에 걸쳐 황화염료 및 디아조 염료의 사장점유율의 현저한 감소와(Table 2,3) 반응성 염료의 사장점유율의 증가가 있었다. 오늘날 사용되는 염료 분류는 3가지의 상이한 염색원리로 섬유에 적용된다.(중략)

  • PDF

Manufacture of Dyed Recycling Wood Fiber Using Waste MDF (폐MDF를 이용한 염색재생섬유 제조)

  • Ju, Seong-Gyeong;Roh, JeongKwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.3
    • /
    • pp.297-307
    • /
    • 2017
  • This research was performed to use recycling wood fiber from waste MDF as raw materials for manufacturing of interior decorative accessories. Virgin fiber of Pinus rigida for manufacturing MDF and recycling fiber from manufactured MDF with virgin fiber were dyed by using reactive dyes (Bis-monochlorotriazine and Vinyl sulfone type), vat dyes (Anthraquinone type), direct dyes (Diazo type) such as red, yellow and blue, and natural dyes using gardenia or sappan wood, and they were examined to evaluate their dyeing properties and sunlight fastness. The hue of virgin fiber and recycling fiber were 4.2YR, and 4.4YR, respectively, which showed red-yellowish color. The recycling fiber looked a little darker than the virgin fiber, where $L^*$ values of the recycling fiber showed a little lower. Reactive, vat and direct dyes dyed well both the virgin and recycling fibers. The recycling fiber showed a little higher values of colour yield and a little lower in $L^*$, but it seemed that there was no significant difference. The Hue values of the recycling fiber and the virgin fiber dyed with sappan wood were 4.4YR and 4.0YR, showing no difference between/after dyeing. However the Hue values of the recycling fiber and the virgin fiber dyed with gardenia were 7.4YR and 6.9YR, respectively. Those values were much higher than the values of the fibers dyed with other chemical dyes. But the fibers dyed with gardenia showed poor sunlight fastness.

A Study of the Fashion Accessory Product Development by Use of Korean Traditional Hanji (Part III) -Dyeing of Hanji with Direct Dye- (전통한지를 활용한 패션 악세서리 상품개발 (제3보) -직접염료를 이용한 한지의 염색-)

  • Kim, Eun-Ah;Ryu, Hyo-Seon;Kim, Yong-Sook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.30 no.12 s.159
    • /
    • pp.1730-1736
    • /
    • 2006
  • To utilize hanji for fashion accessory efficiently, dyeability of Hanji should be improved. Though Hanji mostly consists of cellulose such as cotton and ramie, also has various impurities, and has the different internal and surface structure from textile materials. Because of them, Hanji might show different dyeing behavior. As physical properties of Hanji are reduced in wet condition, dyeing process would damage the physical properties of Hanji Therefore, in this study, dyeing properties of Hanji using direct dye were examined in comparison with cotton and ramie. Effect of dyeing on tensile strength, and bleeding of direct dye by water from Hanji, colorfastness to light were also estimated. While Hanji showed the maximun dye exhaustion at $25^{\circ}C$, cotton and ramie showed those at $60^{\circ}C$. Tensile strength of Hanji reduced after Hanji was dyed. When Hanji was dyed at $25^{\circ}C$, the more bleeding occurred than at higher dyeing temperature. Hanji which had higher K/S values were bled more than those had lower K/S value. Colorfastness to light of Hanji dyed with direct dye was not inferior to those of cotton and ramie.

의류의 염색 가공과 세탁

  • 이범택
    • Proceedings of the Costume Culture Conference
    • /
    • 2003.12a
    • /
    • pp.21-26
    • /
    • 2003
  • I 의류의 염색 및 가공 1. 염색 방법 (섬유제품에 의한 분류) ① 섬유 염색 (Fiber Dyeing) ②사염 ③ 원단 염색 ④ 의류 염색 2. 염료 종류에 따른 염색 (Cellulose 섬유를 중심으로) ① 직접 염료에 의한 염색 ② 반응성 염료에 의한 염색 ③ VAT 염료에 의한 염색 ④ Pigment Dyeing ⑤ 형광 증백제에 의한 염색 3. Washing 가공 ① Normal Washing ② Stone Washing ③ Bio Washing ④ Acid Washing ⑤ Sand Washing (중략)

  • PDF

Analytical Method for Estimating Bound and Free Chromium Content in Chromium-Complex Dyes (함금속 염료의 결합 및 유리 중금속 측정 방법)

  • 김영주;최은경;조영달;김주혜
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.206-209
    • /
    • 2003
  • 함금속 염료는 이들 염료들의 우수한 일광견뢰도 때문에 섬유산업에서 광범위하게 사용되고 있다. 함금속 염료에 사용되는 금속으로는 크롬, 코발트 및 구리 등이 이용되고있다. 금속 착물은 주로 안료뿐만 아니라 산성, 직접 및 반응성 염료에서 사용하고 있다[1,2] 섬유 염색에서 중요한 부분으로는 염색폐수의 방출에 있다 [3]. 특히, 몇몇 염료들의 발암성물질과, 환원에 의한 아조 그룹의 파괴 등으로 발성하는 아민류가 심각한 환경문제로 관심을 갖고있다[4]. (중략)

  • PDF

Properties of PMMA Dyed with Reactive Azo Dye (반응성 아조염료로 착색한 PMMA의 성질)

  • Geum, Neri;Heo, Ji-Won
    • Applied Chemistry for Engineering
    • /
    • v.17 no.4
    • /
    • pp.426-431
    • /
    • 2006
  • Acryl and vinyl sulfone functionalized blue and orange azo dyes were prepared by the coupling reaction of 6-bromo-2-cyano-4-nitroaniline and 2,5-dimethoxy-4-(vinylsulfonyl)benzenamine with 3-acrylamido-(N,N-diethylamino)benzene and 3-methyl-(N,N-diethylamino)benzene, respectively, for the coloring of poly(methyl methacrylate) (PMMA). Allyl functionalized dye was also prepared by reacting vinyl sulfone-containing dye with allylamine. Three types of dyeing method were used: the copolymerization of reactive dye with methyl methacrylate (MMA) and dyeing by polymerization of MMA in the presence of polymeric dye and dye 2 without reactive function. The color fastness for the three PMMAs were evaluated by comparing the solubility of dye under various conditions.

Analysis of dye components using MECC and ion-pairing chromatography (MECC법과 Ion-Pairing 크로마토그래피법을 이용한 염료성분의 분석)

  • Jeong, Hyuk
    • Analytical Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.31-38
    • /
    • 2006
  • Micellar electrokinetic capillary chromatography(MECC) and HPLC with ion-pairing mechanism were applied for the separation of the well known environmental wastes from dye industry. These compounds include H-acid, J-acid, ${\gamma}$-acid, orthanilic acid, sulfanilic acid and 2-naphthylamine-1,5-disulfonic acid, and are known to be the diazo components of the azo dye. MECC method was also applied to separate few acid dyes including Acid Orange 7, Acid Orange 5 and Acid Blue 92 and direct dye such as Direct Red 80. Informations about the diazo components of any azo dye could be obtained by comparison of electropherogram of the reduction solution of a given dye with those obtained from standard materials such as H-acid, J-acid, ${\gamma}$-acid, orthanilic acid, sulfanilic acid and 2-naphthylamine-1,5-disulfonic acid. It has been concluded that MECC and HPLC with ion-pairing mechanism could be successfully applied for the analysis of unknown dyes and their diazo components.

Study for the separation and comparison of azo dyes and their diazo components (아조염료와 디아조 성분의 분리 및 비교에 관한 연구)

  • Jeong, Hyuk
    • Analytical Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.50-57
    • /
    • 2006
  • Well known environmental wastes from dye industry were separated by the micellar electrokinetic capillary chromatography(MECC). These wastes include H-acid modifier and 2-naphthylamine-1,5-disulfonic acid, and are known to be the diazo components of the azo dye. The results of the separation were compared with the result obtained by the HPLC using ion-pairing mechnism. MECC method was also applied to separate a few direct dyes including Direct Blue 2, Direct Blue 6 and Direct Blue 15, and reactive dye such as Reactive Orange 4. Informations about the diazo components of any azo dye could be obtained by comparison of electropherogram of the reduction solution of given dye with those obtained from standard materials such as H-acid, J-acid, ${\gamma}$-acid, orthanilic acid, sulfanilic acid and 2-naphthylamine-1,5-disulfonic acid which are used as diazo components of the typical azo dyes. It has been concluded that MECC and HPLC with ion-pairing mechanism could be successfully applied for the analysis of unknown dyes and their diazo components.