• Title/Summary/Keyword: 직접강도해석

Search Result 227, Processing Time 0.025 seconds

A study on the smoke control performance of the damper exhaust system at FCEV fire in tunnel for small vehicles (소형차 전용터널 내 수소연료전지차 화재시 집중배기방식의 제연성능에 관한 연구)

  • Hong, Seo-Hee;Baek, Doo-San
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.745-756
    • /
    • 2022
  • The road tunnel is a semi-closed space that is blocked on all sides except the entrance and exit, and in the event of a fire, the smoke of the fire spreads longitudinally due to heat buoyancy caused by the fire and air currents that always exist in the tunnel. To solve this problem, smoke removal facilities are installed in road tunnels to secure a safe evacuation environment by controlling the direction of movement of smoke or directly smoking at fire points. In urban areas, the service level of urban roads decreases due to the increase in traffic due to the increase in population, and as a solution, the construction of underground roads in urban areas is increasing. When a fire occurs during hydrogen leakage through TPRD of a hydrogen fuel cell vehicle (FCEV), the fire intensity depends on the amount of leakage, and the maximum fire intensity depends on the orifice diameter of the TPRD. Considering the TPRD orifice diameter of 1.8 mm, this study analyzed the diffusion distance of fire smoke according to the wind speed of the roadway and the opening interval of the large exhaust port when the maximum fire intensity was 15 MW. As a result, it was analyzed that air flow in the tunnel could be controlled if the wind speed of the road in the tunnel was less than 1.25 m/s, and smoke could be controlled within 200 m from the fire if the damper interval was 50 m and 100 m.

A Study on the Application Direction of Finite Element Analysis in the Field of Packaging through Research Trend Analysis in Korea (국내 연구 동향 분석을 통한 포장분야에서 유한요소해석의 적용 방향에 관한 고찰)

  • Lee, Hakrae;Jeon, Kyubae;Ko, Euisuk;Shim, Woncheol;Kang, Wookgun;Kim, Jaineung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.23 no.3
    • /
    • pp.191-200
    • /
    • 2017
  • Proper packaging design can meet both the environmental and economic aspects of packaging materials by reducing the use of packaging materials, waste generation, material costs, and logistics costs. Finite element analysis(FEM) is used as a useful tool in various fields such as structural analysis, heat transfer, fluid motion, and electromagnetic field, but its application in the field of packaging is still insufficient. Therefore, the application of FEM to the field of packaging can save the cost and time in the future research because it is possible to design the package by computer simulation, and it is possible to reduce the packaging waste and logistics cost through proper packaging design. Therefore, this study investigated the FEM papers published in Korea for the purpose of helping research design using FEM program in the field of packaging in the future. In this paper, we analyzed the 29 papers that were directly related to the analysis of FEM papers published in domestic journals from 1991 to 2017. As a result, we analyzed the research topic, FEM program, and analysis method using each paper, and presented the direction that can be applied in future packaging field. When the FEM is applied to the packaging field, it is possible to change the structure and reduce the thickness through the stress and vibration analysis applied to the packaging material, thereby reducing the cost by improving the mechanical strength and reducing the amount of the packaging material. Therefore, in the field of packaging research in the future, if the FEM is performed together, economical and reasonable packaging design will be possible.

Numerical Analysis of Laterally Displacing Abutment in High Landfill Slope (고성토사면에 시공된 교대의 측방유동에 대한 수치해석적 연구)

  • Park, Min-Cheol;Jang, Seo-Yong;Shin, Baek-Chul;Han, Heui-Soo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.2
    • /
    • pp.27-39
    • /
    • 2012
  • This research is to propose the reinforcing method and design code for the lateral behaviors of the abutment displacement induced from the rainfall infiltration on high landfill slope. First, to make the proper numerical analysis, in-situ soil (weathered granite soil) was taken, and the variance of strength parameters according to water content variance was examined by undrained direct shear test, furthermore, other soil parameters were calculated from the standard penetration test such as elastic modulus and Poisson's ratio etc,. Those parameters were used to calculate the lateral behavior of abutment by finite element method and the member force of pile in high landfill slope according to rainfall infiltration . From the results, the shoe displacement on abutment was calculated as 8.98cm, which is 3 times bigger than the allowable displacement, 3cm. To reinforce it, several reinforcing methods were selected and analyzed such as reinforced retaining wall, soil surcharge, pile reinforcing (5m enlargement, 3-line arrangement, 5m enlargement and 3-line arrangement). In case of 5m enlarged and 3-line arrangement piles, the lateral behavior of shoe showed lower value(2.26 cm) than allowable displacement.

Nonlinear Lateral Behavior and Cross-Sectional Stress Distribution of Concrete Rocking Columns (콘크리트 회전형 기둥의 비선형 횡방향 거동 및 단면응력 분포 분석)

  • Roh, Hwa-Sung;Hwang, Woong-Ik;Lee, Hu-Seok;Lee, Jong-Seh
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.285-292
    • /
    • 2012
  • Fixed connection is generally used for beam and column connections of concrete structures, but significant damages at the connection due to severe earthquakes have been reported. In order to reduce damages of the connection and improve seismic performance of the connection, several innovative connections have been suggested. One newly proposed connection type allows a rotation of the connection for applications in rotating or rocking beams, columns, and shear walls. Such structural elements would provide a nonlinear lateral force-displacement response since their contact depth developed during rotation is gradually reduced and the stress across the sections of the elements is non-linearly distributed around a contact area, which is called an elastic hinge region in the present study. The purpose of the present study is to define the elastic hinge region or length for the rocking columns, through investigating the cross-sectional stress distribution during their lateral behavior. Performing a finite element analysis (FEA), several parameters are considered including axial load levels (5% and 10% of nominal strength), different boundary conditions (confined-ends and cantilever types), and slenderness ratios (length/depth = 5, 7, 10). The FEA results showed that the elastic hinge length does not directly depend on the parameters considered, but it is governed by a contact depth only. The elastic hinge length started to develop after an opening state and increased non-linearly until a rocking point(pre-rocking). However, the length did not increase any more after the rocking point (post-rocking) and remained as a constant value. Half space model predicting the elastic hinge length is adapted and the results are compared with the numerical results.

A Study on the Development of a Welding Carriage System for Vertical Weld (수직 용접을 위한 용접 캐리지 시스템 개발에 관한 연구)

  • Byun, Hong-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.246-254
    • /
    • 2016
  • Thick-shell welding for super-sized oil storage tanks is currently done manually, which causes deterioration in quality and a lack of uniformity due to frequent rewelding. The limitations of the external environment must also be considered for manual welding. This paper describes the development of a carriage system for automatic vertical welding to increase reliability, reduce cost, and enhance productivity. The system consists of a welding platform, carriage device, and control unit, which were conceptually designed according to design specifications and manufactured with modular parts. In addition, the structure was analyzed for safety and to predict design problems in advance, and the results are reflected in reviewing the design. To evaluate the performance of the system, a tensile test, bending test, and weld time test were carried out, and the results were satisfactory. The time required for automatic weld was greatly improved by more than 87%, compared to the manual welding time.

A study on the measurement of thermophysical properties of ${Al}_{2}{O}_{3}, {Si}_{3}{N}_{4}$ and SiC series by a single rectangular pulse heating (방향파 펄스 가열에 의한 ${Al}_{2}{O}_{3}, {Si}_{3}{N}_{4}$, SiC 계열의 열물성치 측정에 관한 연구)

  • 차경옥;장희석;이흥주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.145-156
    • /
    • 1990
  • In this study, thermophysical properties of the engineering ceramic materials such as $Al_{2}$O$_{3}$, Si$_{3}$N$_{4}$ and SiC were measured b y a single rectangular pulse heating method. The values of thermal diffusivities, specific heats, and thermal conductivities were measured as a function of temperature ranging form room temperature to 1300K. The measured thermal properties of one group of ceramic material were compared with those of other group and discussed in detail in connection with the chemical composition. Thus, some criteria for thermal design with the engineering ceramic materials were proposed.

Residual Stress Measurement of Flat Welded Specimen by Electronic Speckle Pattern Interferometry (전자처리스페클패턴 간섭법을 이용한 평판 용접시험편의 잔류응력 측정)

  • Chang, Ho-Seob;Kim, Dong-Soo;Jung, Hyun-Chul;Kim, Kyung-Suk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.2
    • /
    • pp.149-154
    • /
    • 2012
  • The size and distribution of welding residual stress and welding deformation in welding structures have an effect on various sorts of damage like brittle failure, fatigue failure and stress corrosion cracking. So, research for this problem is necessary continuously. In this study, non-destructive technique using laser electronic speckle pattern interferometry, plate of welding specimen according to the external load on the entire behavior of residual stress are presented measurement techniques. Once, welding specimen force tensile loading, using electronic speckle pattern interferometry is measured. welding specimen of base metal and weld zone measure strain from measured result, this using measure elastic modulus. In this study, electronic speckle pattern interferometry use weld zone and base metal parts of the strain differences using were presented in residual stress calculated value, This residual stress value were calculated by numerical calculation. Consequently, weld zone of modulus high approximately 3.7 fold beside base metal and this measured approximately 8.46 MPa.

Adhesion Properties of Rubber Composite with Direct Blending Technique and Adhesive Composition (직접블렌딩 기술과 접착제 조성이 고무복합체 물성에 미치는 영향)

  • Lee, Seong-Jae;Chang, Young-Wook;Chung, Kyung-Ho
    • Elastomers and Composites
    • /
    • v.34 no.3
    • /
    • pp.253-261
    • /
    • 1999
  • The cure properties of rubber compounds containing different adhesive compositions were examined. As the amounts of tannin were increased in the adhesive composition, the scorch time was increased and cure rate was decreased due to the size and shape of tannin molecules. Also, the effect of adhesive composition on the adhesion between rubber and fiber was examined by TCAT(Tire Cord Adhesion Test), The reinforcing cords used in this study were mon ofilaments of nylon 610 and nylon 66. According to the results, the optimum adhesion strength between rubber and fiber could be obtained with adhesives whose molar ratios of formaldehyde/resorcinol were above 5/1 in the recipes. Although the level of dip pick-up(DPU) on the reinforcing cord affects the adhesion strength, the DPU of nylon 610 monofilament did not affect the adhesion strength because the level of DPU was constant regardless of the adhesive compositions. In this case, the adhesion strength with the adhesive composition could be explained with the behavior of tannin in the adhesive.

  • PDF

A Nonlinear Constitutive Model for Progressive Fracturing of Concrete (콘크리트의 점진적(漸進的) 파괴(破壞)에 대한 비선형(非線型) 구성(構成)모델확립연구(硏究))

  • Oh, Byung Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.2
    • /
    • pp.55-64
    • /
    • 1984
  • Presented is a nonlinear constitutive model for progressive tensile fracturing of concrete. The model is incremental, path-dependent, and tensorialy invariant. The total strain tensor is assumed to be a sum of a purely elastic component and an inelastic component. The material is considered to contain weak planes of all directions which characterize the planes of the microcracks. A one-to-one functional dependence is assumed between the normal stress and the normal strain across each of the weak planes. The tangential stiffness of concrete is then derived form the principle of virtual work. The present theory can be applied to loading histories which are nonproportional or during which the principal directions rotate. Good agreement with the available direct tensile test data which cover strain-softening is demonstrated.

  • PDF

Reliability-based Design Criteria for Reinforced Concrete Structures Based on Partial and Combined Resistance Factor Formats (부분(部分) 및 조합저항계수형식(組合抵抗係數形式)에 의한 철근(鐵筋)콘크리트구조(構造)의 신뢰성(信賴性) 계기준(計基準))

  • Oh, Byung Hwan;Lee, Seong Lo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.87-97
    • /
    • 1990
  • There is the need to balance safety, economy and serviceability in all phases of society problems. This is especially true in structural code formulation. where a framework is established by which practicing structural engineers can be assured of designing structures that reasonably meet the above three objectives. The existing design codes, which are generally based on the structural theory and certain engineering experience, do not realistically consider the uncertainties of loads and resistances and the basic reliability concepts. The purpose of the present study is therefore to develop the realistic reliability-based design criteria to secure adequate safety arid reliability, and to derive the models for partial and combined resistance factor formats. To this end, the reliability levels of our existing design code for concrete structures are first evaluated and the target reliabilities are determined, the new code formats are evolved from these target reliabilities. The present study indicates that the proposed formats exhibit relatively-uniform reliability and reasonably take into account the different material characteristics of concrete and steel in concrete structures.

  • PDF