• Title/Summary/Keyword: 직접강도법

Search Result 222, Processing Time 0.025 seconds

Properties of Disconitinuity for the Seoul Granite in the Northeastern Part of Seoul City (서울시 북동부의 서울화강암에 대한 불연속면의 특성)

  • 정상원;정상용
    • The Journal of Engineering Geology
    • /
    • v.12 no.2
    • /
    • pp.167-178
    • /
    • 2002
  • Properties of discontinuity for Seoul Granite in northeastern part of Seoul City were analyzed by dividing structural domains into Surak and Bulam Mtn. areas. Important parameters measured among several engineering properties of a rock during tunnel excavation and road construction are as follows: 1) Orientation of joint, 2) joint spacing, 3) joint density, and 4) uniaxial compressive strength. Orientation, spacing, and density of joints can be directly measured during field investigation using scanline survey, circle-inventory method, and window survey. Uniaxial compressive strength of the rock was calculated by a simple correlation equation although it is originally necessary to prepare core samples in measuring it. Major orientations of joints measured from both areas are 3 sets of joints with different orientations. In other words, they are 2 sets of orthogonal joint and 1 set of sheet joint that is dipping at low angle, and have very similar orientations in both areas. Joint densities in both areas range from 0.039 and 0.066/cm, and average joint length are between 1.30 and 4.52m. Average joint spacing also has values from 10.3cm up to 59.6cm, and shows significant difference along specific orientation of scanlines measured. Values of uniaxial compressive strength calculated on the basis of Schmidt hammer rebound values range from 217 to 335 MPa, which indicates very strong rock type by classification of wall strength.

An Experimental Study on Droplet Size Characteristics of Liquid Jets in Subsonic Crossflow (수직분사제트에서 액적크기특성에 대한 실험적 연구)

  • Kim, Min-Ki;Song, Jin-Kwan;Kim, Jin-Ki;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.59-63
    • /
    • 2006
  • A direct photograph measurement technique was used to determine the spatial distribution of the spray droplet diameter in subsonic crossflow and it also obtain that SMD distribution by using PLLIF technique. The injector internal flow was classified as three modes such as a normal, cavitation, and hydraulic flip. The objectives of this research are getting a droplet distribution and drop size measurement of normal flow and compare with the other flow effects. Although the study showed visually that drop size were spatially dependent of Air-stream velocity, fuel injection velocity, and normalized distance from the injector exit length.(x/d, y/d) There are also difference characteristics between cavitation, hydraulic flip and the normal flow.

  • PDF

An Elasto-Plastic Constitutive Law for Modeling the Shear Behavior of Rough Rock Joints (거친 절리면의 전단거동 해석을 위한 탄소성 구성법칙)

  • 이연규;이정인
    • Tunnel and Underground Space
    • /
    • v.8 no.3
    • /
    • pp.234-248
    • /
    • 1998
  • This paper presents a new constitutive model for numerical modeling the shear behaviour of rough rock joints. The model incorporates the dilatancy of joints on the basis of elasto-plastic theory. Barton's empirical shear strength formular are adopted in the formulation process. The mobilized JRC concept is evoked to address the shear strength hardening and sofrening phenomena. The mobilized JRC in the pre- and post-peak range is approximated by assuming that the variation of JRC is a function of tangential plastic work. Discrete finite joint element is used to implement the proposed constitutive model. The model is validated by the numerical direct shear test on a single joint which is subjected to different boundary conditions. The test results are in good agreement with the experimental observations reported by other authors. The numerical tests also exhibit that the proposed model can simulate the salient features envisaged in the behaviour of rough rock joints.

  • PDF

Electrical and the Mechanical Properties of Graphite particle/carbon fiber hybrid Conductive Polymer Composites (흑연입자/탄소섬유 혼합 보강 전도성 고분자 복합재료의 전기적, 기계적 특성 연구)

  • Heo Seong-Il;Yun Jin-Cheol;Oh Kyung-Seok;Han Kyung-Seop
    • Composites Research
    • /
    • v.19 no.2
    • /
    • pp.7-12
    • /
    • 2006
  • Graphite particle/carbon fiber hybrid conductive polymer composites were fabricated by the compression molding technique. Graphite particles were mixed with an epoxy resin to impart the electrical conductivity in the composite materials. In this study, graphite reinforced conductive polymer composites with high filler loadings were manufactured to accomplish high electrical conductivity above 100S/cm. Graphite particles were the main filler to increase the electrical conductivity of composites by direct contact between graphite particles. While high filler loadings are needed to attain good electrical conductivity, the composites becomes brittle. So carbon fiber was added to compensate weakened mechanical property. With increasing the carbon fiber loading ratio, the electrical conductivity gradually decreased because non-conducting regions were generated in the carbon fiber cluster among carbon fibers, while the flexural strength increased. In the case of carbon fiber 20wt.% of the total system, the electrical conductivity decreased 27%, whereas the flexural strength increased 12%.

Relationship between Compressive Strength and Dynamic Modulus of Elasticity in the Cement Based Solid Product for Consolidating Disposal of Medium-Low Level Radioactive Waste (중·저준위 방사성 폐기물 처리용 시멘트 고화체의 압축강도와 동탄성계수의 관계)

  • Kim, Jin-Man;Jeong, Ji-Yong;Choi, Ji-Ho;Shin, Sang-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.321-329
    • /
    • 2013
  • Recently, the medium-low level radioactive waste from nuclear power plant must be transported from temporary storage to the final repository. Medium-low level radioactive waste, which is composed mainly of the liquid ion exchange resin, has been consolidated with cementitious material in the plastic or iron container. Since cementitious material is brittle, it would generate cracks by impact load during transportation, signifying leakage of radioactive ray. In order to design the safety transporting equipment, there is a need to check the compressive strength of the current waste. However, because it is impossible to measure strength by direct method due to leakage of radioactive ray, we will estimate the strength indirectly by the dynamic modulus of elasticity. Therefore, it must be identified the relationship between of strength and dynamic modulus of elasticity. According to the waste acceptance criteria, the compressive strength of cement based solid is defined as more than 3.44 MPa (500 psi). Compressive strength of the present solid is likely to be significantly higher than this baseline because of continuous hydration of cement during long period. On this background, we have tried to produce the specimens of the 28 day's compressive strength of 3 to 30 MPa having the same material composition as the solid product for the medium-low level radioactive waste, and analyze the relationship between the strength and the dynamic modulus of elasticity. By controling the addition rates of AE agent, we made the mixture containing the ion exchange resin and showing the target compressive strength (3~30 MPa). The dynamic modulus of elasticity of this mixtures is 4.1~10.2 GPa, about 20 GPa lower in the equivalent compressive strength level than that of ordinary concrete, and increasing the discrepancy according to increase strength. The compressive strength and the dynamic modulus of elasticity show the liner relationship.

Development of Water Footprint Inventory Using Input-Output Analysis (산업연관분석을 활용한 물발자국 인벤토리 개발)

  • Kim, Young Deuk;Lee, Sang Hyun;Ono, Yuya;Lee, Sung Hee
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.4
    • /
    • pp.401-412
    • /
    • 2013
  • Water footprint of a product and service is the volume of freshwater used to produce the product, measured in the life cycle or over the full supply chain. Since water footprint assessment helps us to understand how human activities and products relate to water scarcity and pollution, it can contribute to seek a sustainable way of water use in the consumption perspective. For the introduction of WFP scheme, it is indispensable to construct water inventory/accounting for the assessment, but there is no database in Korea to cover all industry sectors. Therefore, the aim of the study is to develop water footprint inventory within a nation at 403 industrial sectors using Input-Output Analysis. Water uses in the agricultural sector account for 79% of total water, and industrial sector have higher indirect water at most sectors, which is accounting for 82%. Most of the crop water is consumptive and direct water except rice. The greatest water use in the agricultural sectors is in rice paddy followed by aquaculture and fruit production, but the greatest water use intensity was not in the rice. The greatest water use intensity was 103,263 $m^3$/million KRW for other inedible crop production, which was attributed to the low economic value of the product with great water consumption in the cultivation. The next was timber tract followed by iron ores, raw timber, aquaculture, water supply and miscellaneous cereals like corn and other edible crops in terms of total water use intensity. In holistic view, water management considering indirect water in the industrial sector, i.e. supply chain management in the whole life cycle, is important to increase water use efficiency, since more than 56% of total water was indirect water by humanity. It is expected that the water use intensity data can be used for a water inventory to estimate water footprint of a product for the introduction of water footprint scheme in Korea.

A comparison study on shear bond strength of 3D printed resin and conventional heat-cured denture base resin to denture relining materials (3D-프린팅 의치상 레진과 열중합 의치상 레진에서의 의치 첨상 재료 간의 전단결합강도 비교 연구)

  • Cho, Sung-Yoon;Song, Young-Gyun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.37 no.4
    • /
    • pp.232-243
    • /
    • 2021
  • Purpose: The purpose of this study was to evaluate the shear bond strength of various 3D printed denture base resins and the conventional denture base resin to various denture relining materials. Materials and Methods: For denture base materials, a heatcured (Vertex RS) and two types of 3D printed DENTCA Denture base II, NextDentTM Base) were used. And 4 types denture relining materials (Tokuyama Rebase II fast, Kooliner, Denture Liner, Denture Liner, Lang Jet Denture Repair Kit) with different components were used. It was classified into 12 groups. Adhesion was performed between the resin base and the relining materials in accordance with ISO/TS 11405 standard. The shear bonding strength was measured, and then the adhesion interface was observed with a stereoscopic microscope and a scanning electron microscope. The fracture pattern was investigated through the analysis of the fragment. Results: In the 3D printed denture resin group, the shear bonding strength with relining materials was significantly lower than that of the heat-cured resin group (P < 0.05). The group of polymethyl methacrylate -based relining materials, high shear bonding strength was shown regardless of the type of denture. As for the fracture pattern, adhesive fracture appeared in most groups, and cohesive, mixed fracture appeared in some groups. Conclusion: The polymethyl methacrylate -based denture relining materials showed high shear bonding strength values compared to other denture relining materials. But, for direct methods, it is considered advantageous in terms of shear bonding strength to use a isobutyl methacrylate-based denture relining materials.

DEVELOPMENT OF A SYSTEM FOR DECISION OF STRENGTH PARAMETERS AND OF DEGREE OF COMPACTION IN COMPACTED SOIL WITH CONE PENETROMETER (콘관입시험기를 이용한 다짐도 측정 및 지반정수 추출법 개발)

  • YuJinLim;HyeonSeungLee
    • Journal of the Korean Geophysical Society
    • /
    • v.4 no.4
    • /
    • pp.287-296
    • /
    • 2001
  • 국내 건설현장에서는 성토다짐의 다짐도 확인을 위해 주로 평판재하시험(PBT)을 사용한다. 평판재하시험은 재하시험시 표층의 매우 잘 다져진 곳에 대한 지지력 계수를 획득 하여 실다짐도를 과대 평가하는 결과를 초래할 수 있다. 이에 착안하여 응력도달 범위가 작은 평판재하시험을 지양하고 콘관입시험으로부터 획득되는 노상의 관입지수로부터 지반의 다짐도를 추정할 수 있는 콘관입시험기와 구동시스템 및 해석 프로그램을 개발하였다. 개발된 시스템은 다짐차량에 간편하게 부착하여 현장에서 직접 다짐도를 획득할 수 있으며 다짐도와 더불어 다져진 지반의 전단강도정수를 동시에 측정할 수 있다.

  • PDF

반응표면법과 Monte Carlo 모사를 이용한 불확실한 변동의 강건설계를 위한 확률적 민감도의 제안

  • 백석흠;이경영;조석수;주원식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.89-89
    • /
    • 2004
  • 결정적인 알고리즘과 입력정보의 사용은 평가된 해석과 실제 시스템 값과의 차이로 잘못된 결론을 이끌지도 모른다. 실제 시스템은 대부분 각각의 입력 매개변수들(input parameters)과 관계된 넓은 공차 영역(tolerance band)을 가지고 있어서 입력정보로 하나의 단일한 값을 할당하는 것이 어렵다. 단일 입력에 대한 한가지 해는 변동의 이해 없이 제한된 값이라는 것을 인식할 필요가 있는데 대개 결정론적 설계는 형상과 관련된 치수변동, 항복강도나 부재의 밀도, 탄성계수와 같은 재료 물성치의 불확실성(uncertainty)과 시스템에 작용하는 하중의 변동 등을 직접 고려하지 않고 설계를 수행하기 때문에 수용할 수 있는 오차의 범위 안에서 시스템의 응답을 정확히 평가하기가 쉽지 않았다.(중략)

  • PDF

대전지역 토양흄산과 Am(III) 및 Eu(III) 이온과의 착물반응 연구

  • 양한범
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.841-846
    • /
    • 1995
  • 대전지역 토양에서 추출한 흄산(TJHA)과 Am(III), Eu(III)의 착물형성에 대한 안정도상수를 추출용매 di-2-ethylhexyl phosphoric acid와 희석제 toluene을 사용하여 용매추출법으로 구하였다. 이온강도가 0.1M NaCIO$_4$에서 TJHA의 총 carboxylate capacity를 직접 전위차적정법으로 분석한 결과 3.757 meq/g이고, apparent pKa는 5.15 이었다. TJHA와 Am(III) 및 Eu(III)의 조건부 안정도상수의 log$\beta$1 값과 log$\beta$2 값을 흄산의 이온화도 함수로 구한 결과, Eu-TJHA은 0.1M NaClO$_4$일때 log $\beta$1=5.948$\alpha$ + (6.83 $\pm$ 0.3) 및 log $\beta$2 = 5.687$\alpha$ + (10.44 $\pm$ 0.4)이며, Am-TJHA은 log$\beta$$_1$= 4.004 $\alpha$ + (6.96 $\pm$ 0.2) 및 log$\beta$$_2$= 3.719 $\alpha$ + (11.71 $\pm$ 0.2)이었다.

  • PDF