• Title/Summary/Keyword: 직립식 호안

Search Result 8, Processing Time 0.021 seconds

Experimental Study for Overtopping Discharges of Sea Dike having Low Mound and High Wave Wall (LMHW) (낮은 마운드 높이에 높은 상치구조물을 갖는 경사식 호안(LMHW 호안)의 월파량에 대한 실험적 연구)

  • Jung, Jae-Sang;Yoon, Jae-Seon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.335-343
    • /
    • 2019
  • Overtopping discharge for sea dike having low mound and high wave wall (LMHW sea dike) is investigated with hydraulic experiments in this study. Vertical, Flare and Bullnose type wave walls are selected and Tetrapods (double layer) and Accropode (one layer) are adopted for armour layers of the front slope. The results of the hydraulic experiments are compared to the overtopping formulas for armoured rubble slopes and vertical sea dikes suggested by EurOtop Manual. Predicted overtopping discharges are underestimated as the roughness efficiency factors (γf) of armour blocks suggested by EurOtop are adopted when the overtopping formula for armoured rubble slopes sea dike is used. Meanwhile the predicted overtopping discharges agree well with the hydraulic experiments when the modified roughness efficiency factors redefined by multiplying efficiency factor of the heights of armoured crest berm and wave wall (γAR) are adopted. Return wall effects on a vertical wall (Kortenhaus et al., 2003; Pearson et al., 2004a) and the effects on a smooth dike slope (Van Doorslaer et al., 2015) in EurOtop Manual are investigated for Flare and Bullnose type wave walls. As a results of the comparison between experimental results and 2 formulas, return wall effect on a smooth dike was more valid for LMHW sea dike.

Physical Model Test for Wave Overtopping for Vertical Seawall with Relatively Steep Bottom Slope for the Impulsive Wave Condition (상대적으로 급한 경사 수심을 갖는 직립식 호안에서 충격파 조건에 대한 월파량 산정 수리실험)

  • Young-Taek Kim;Jong-In Lee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.2
    • /
    • pp.33-40
    • /
    • 2023
  • Wave overtopping rate is one of the most important design parameters for coastal structures. In this study, the physical model tests for measuring the wave overtopping have been conducted with the foreshore slope in front of the seawall. The bottom seabed for the coastal road area was fabricated at the wave flume for two areas in the East sea areas. The wave overtopping rate was measured for various water depths and wave conditions in each coastal area. In particular, the impulsive wave conditions were compared with the previous research and the similar trends of wave overtopping was observed. It could be known that the effect of foreshore slope was significant and should be concerned for applying theses formula like EurOtop.

On Overtopping Characteristics of Tsunami due to Waveforms (파형에 따른 지진해일의 월파특성에 관한 고찰)

  • Lee, Woo-Dong;Kim, Jung-Ouk;Park, Jong-Ryul;Hur, Dong-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.142-146
    • /
    • 2017
  • 지진해일의 수리특성을 분석하기 위하여 유사한 파형특성을 가진 고립파를 많이 이용하고 있다. 그러나 고립파의 근사파형은 실제 지진해일에 비해 상당히 좁은 파형분포를 가지고 있다. 이에 수치모의에서는 기존의 고립파 근사식을 개량하여 고립파형의 지진해일을 수치적으로 생성하고 있다. 본 연구에서는 지진해일의 파형분포에 따른 월파특성을 수치적으로 조사하기 위하여 개량된 고립파 근사식을 2차원 N-S solver에서 적용하였다. 이것에 기초하여 수치파동수조에 직립호안과 그 배후에는 월파수조를 설치하고, 지진해일 월파량을 측정하였다. 수치해석결과로부터 직립호안 주변의 공간파형과 마루 위의 유속분포로부터 파형분포에 따른 월파현상을 분석할 수 있었다. 또한 기존 고립파 근사이론 대비 개량된 고립파의 체적비에 따른 월파량 변화를 정량적으로 조사하였다. 그 결과 지진해일의 체적비가 증가할수록 월파량이 거의 선형적으로 증가하는 경향을 나타내었다.

  • PDF

Physical Model Experiment for Estimating Wave Overtopping on a Vertical Seawall under Regular Wave Conditions for On-Site Measurements (현장 월파계측을 위한 규칙파 조건에서 직립식 호안의 월파량 추정에 관한 모형실험)

  • Dong-Hoon Yoo;Young-Chan Lee;Do-Sam Kim;Kwang-Ho Lee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.4
    • /
    • pp.75-83
    • /
    • 2023
  • Apart from implementing hardware solutions like raising the crest freeboard of coastal structures to efficiently counter wave-overtopping, there is a simultaneous requirement for software-driven disaster mitigation strategies. These tactics involve the swift and accurate dissemination of wave-overtopping information to the inland regions of coastal zones, enabling the regulation of evacuation procedures and movement. In this study, a method was proposed to estimate wave-overtopping by utilizing the temporal variation of wave heights exceeding the structure's crown level, with the aim of developing an on-site wave measurement system for providing wave-overtopping information in the field. Laboratory model experiments were conducted on vertical seawall structures to measure wave-overtopping volumes and wave runup heights under different wave conditions and structural freeboard variations. By assuming that the velocity of water inundation on the top of the structure during wave-overtopping events is equivalent to the long-wave velocity, an overtopping discharge coefficient was introduced. This coefficient was utilized to estimate the rate of wave-overtopping based on the temporal changes in wave runup heights measured at the top of the structure. Upon reasonably calculating the overtopping discharge coefficient, it was verified that the estimation of wave-overtopping could be achieved solely based on the wave runup heights.

Hydraulic and Numerical Tests on Wave Overtopping for Vertical Seawall with Relatively Shallow and Steep Sloped Water Depth (상대적으로 수심이 낮고 급한 전면 경사를 갖는 직립식 호안에서의 월파량 산정에 관한 수리 및 수치 실험)

  • Young-Taek, Kim;Hyukjin, Choi;Hwangki, Lee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.6
    • /
    • pp.258-265
    • /
    • 2022
  • In Korea, the hydraulic model tests for measuring the wave overtopping have been almost conducted with no bottom slope or single slope condition in Korea. In this study, the bottom seabed for the coastal road area was fabricated at the wave flume and the wave overtopping was measured. The overtopping rate was also measured with the numerical modelling by OLAFoam. The measuring data were compared with EurOtop manual. It could be known the the influence of the foreslope in front of the vertical wall was significant and the these effects should be concerned when designing the coastal structures. And also it could be known that OLAFoam could be used to predict the wave overtopping rate for the complex bottom topography.

Estimate of Wave Overtopping Rate on Vertical Wall Using FUNWAVE-TVD Model (FUNWAVE-TVD 모델을 이용한 직립구조물의 월파량 산정)

  • Kwak, Moon Su;Kobayashi, Nobuhisa
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.6
    • /
    • pp.257-264
    • /
    • 2021
  • This study established a numerical model capable of calculating the wave overtopping rate of coastal structures by nonlinear irregular waves using the FUNWAVE-TVD model, a fully nonlinear Boussinesq equation model. Here, a numerical model was established by coding the mean value approach equations of EurOtop (2018) and empirical formula by Goda (2009), and adding them as subroutines of the FUNWAVE-TVD model. The verification of the model was performed by numerically calculating the wave overtopping rate of nonlinear irregular waves on vertical wall structures and comparing them with the experimental results presented in EurOtop (2018). As a result of the verification, the numerical calculation result according to the EurOtop equation of this model was very well matched with the experimental result in all relative freeboard (Rc/Hmo) range under non-impulsive wave conditions, and the numerical calculation result of empirical formula was evaluated slightly smaller than the experimental result in Rc/Hmo < 0.8 and slightly larger than the experimental result in Rc/Hmo > 0.8. The results of this model were well represented in both the exponential curve and the power curve under impulsive wave conditions. Therefore, it was confirmed that this numerical model can simulate the wave overtopping rate caused by nonlinear irregular waves in an vertical wall structure.

Numerical Analysis of Runup and Wave Force Acting on Coastal Revetment and Onshore Structure due to Tsunami (해안안벽과 육상구조물에서 지진해일파의 처오름 및 작용파력에 관한 수치해석)

  • Lee, Kwang Ho;Kim, Chang Hoon;Kim, Do Sam;Yeh, Harry;Hwang, Young Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3B
    • /
    • pp.289-301
    • /
    • 2009
  • In this work, wave run-up heights and resultant wave forces on a vertical revetment due to tsunami (solitary wave) are investigated numerically using a numerical wave tank model called CADMAS-SURF (CDIT, 2001. Research and Development of Numerical Wave Channel (CADMAS-SURF). CDIT library, No. 12, Japan.), which is based on a 2-D Navier-Stokes solver, coupled to a volume of fluid (VOF) method. The third order approximate solution (Fenton, 1972. A ninth-order solution for the solitary wave. J. of Fluid Mech., Vol. 53, No.2, pp.257-271) is used to generate solitary waves and implemented in original CADMAS-SURF code. Numerical results of the wave profiles and forces are in good agreements with available experimental data. Using the numerical results, the regression curves determined from the least-square analysis are proposed, which can be used to determine the maximum wave run-up height and force on a vertical revetment due to tsunami. In addition, the capability of CADMAS-SURF is demonstrated for tsunami wave forces acting on an onshore structure using various configuration computations including the variations of the crown heights of the vertical wall and the position of the onshore structure. Based on the numerical results such as water level, velocity field and wave force, the direct effects of tsunami on an onshore structure are discussed.

Experimental Study on Impact Pressure at the Crown Wall of Rubble Mound Seawall and Velocity Fields using Bubble Image Velocimetry (기포영상유속계와 복합파고계를 활용한 경사식 호안 전면에서 쇄파의 형태에 따른 충격쇄파압의 분류)

  • Na, Byoungjoon;Ko, Haeng Sik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.4
    • /
    • pp.119-127
    • /
    • 2022
  • To investigate varying wave impact pressure exerting at the crest wall of rubble mound seawall, depending on breaking wave properties, regular waves with different wave periods were generated. Wave velocity fields and void fraction were measured using bubble image velocimetry and simple combined wave gauge system (Na and Son, 2021). For the waves with shorter wave period, maximum horizontal velocity was less reduced compared to incident wave speed while breaking-induced air entrainment was occurred intensely, leading to a significant reduction of wave impact pressure at the crest wall. For the waves with longer wave periods, less air wave entrained and the wave structure followed a flip-through mode (Cooker and Peregrine, 1991), resulting in an abrupt increase of the impact pressure.