• Title/Summary/Keyword: 직립방파제

Search Result 47, Processing Time 0.026 seconds

On an Analysis of Reflection Coefficients by a Partially Immersed Slotted Plate with a Back Wall (직립벽 앞에 놓인 일정깊이 잠긴 슬릿판에 의한 반사율 해석)

  • 조일형
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.3
    • /
    • pp.143-150
    • /
    • 2003
  • Based on the eigenfunction expansion method, the interaction between monochromatic waves and a partially immersed slotted plate with a back wall has been investigated. Analytical results show that the reflection coefficients by a partially immersed slotted plate depend on the porosity, immersed depth, chamber width, incidence angle and wave frequency. It is found that the reflection coefficient has minimum value within entire frequency range when the porosity has optimal value 0.1. Comparison between the analytical results and the experimental results(Zhu,2001) of reflection coefficients is made for various chamber widths, immersed depths and wave periods with good agreement. The present analytic method can account adequately for energy dissipation caused by flow separation behind a slotted plate and provide the design informations for the construction of slit caisson breakwater.

Evaluation of Empirical Porous-Media Parameters for Numerical Simulation of Wave Pressure on Caisson Breakwater Armored with Tetrapods (테트라포드 피복 케이슨 방파제 파압 수치모의를 위한 투수층 경험계수 산정)

  • Lee, Geun Se;Oh, Sang-Ho;Yoon, Sung Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.344-350
    • /
    • 2019
  • In this study, waves2Foam implemented in OpenFOAM is used to simulate numerically the wave pressure on a verical caisson under the condition of with and without the placement of Tetrapods in front of the caisson. The comparisons of the numerical results and the experimental data show fairly good agreement between them. Based on this, it is possible to suggest an optimal combination of coefficients for an empirical formula to represent the protective TTP layer as porous media.

Effects of Long-Term Harbor Shutdown and Temporal Operational Stoppage upon Optimal Design of Vertical Breakwater Caisson (장기간의 항만 폐쇄와 일시적 운영 중단이 직립 방파제 케이슨의 최적 설계에 미치는 영향)

  • Suh, Kyung-Duck;Kim, Deok-Lae;Kim, Kyung-Suk
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.2
    • /
    • pp.113-127
    • /
    • 2007
  • In this study, a model to calculate the expected total construction cost is developed that simultaneously considers the rehabilitation cost related to the sliding of the caisson, the economic damage cost due to harbor shutdown in the event of excessive caisson sliding, and the economic damage cost due to temporal operational stoppage by excessive wave overtopping. A discount rate is used to convert the damage costs occurred at different times to the present value. The optimal cross-section of a caisson is defined as the cross-section that requires a minimum expected total construction cost within the allowable limit for the expected sliding distance of the caisson during the lifetime of the breakwater. Two values are used for the allowable limit: 0.3 and 0.1 m. It was found that the economic damage cost due to harbor shutdown by excessive caisson sliding is more critical than the rehabilitation cost of the caisson or the economic damage cost by excessive wave overtopping in the decision of the optimal cross-section. In addition, the optimal cross-section of the caisson was shown to be determined by the allowable limit for the expected sliding distance rather than the minimum expected total construction cost as a larger value is used for the threshold sliding distance of the caisson for harbor shutdown.

Probability of Failure on Sliding of Monolithic Vertical Caisson of Composite Breakwaters (혼성제 직립 케이슨의 활동에 대한 파괴확률)

  • 이철응
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.2
    • /
    • pp.95-107
    • /
    • 2002
  • A reliability analysis on sliding of monolithic vertical caisson of composite breakwaters is extensively carried out in order to make the basis for the applicability of reliability-based design method. The required width of caisson of composite breakwaters is determined by the deterministic design method including the effect of impulsive breaking waves as a function of water depth, also studied interactively with the results of reliability analyses. It is found that the safety factor applied in current design may be a little over-weighted magnitude for the sliding of caisson. The reliability index/failure probability is also seen to slowly decrease as the water depth increases for a given wave condition and a safety factor. In addition, optimal safety factor can roughly be evaluated by using the concept of target reliability index for several incident waves. The variations of optimal safety factor may be resulted from the different wave conditions. Finally, it may be concluded from the sensitivity studies that the reliability index may be more depended on the incident wave angles and the wave periodsrather than on the bottom slopes and the thickness of rubble mound.

Analysis of Erosion Characteristics for Environment-Friendly Remodeling of Revetment Structures in the West Coast Area of Korea (환경친화적 연안 호안구조물 리모델링을 위한 서해안 침식특성 분석)

  • Park, Jong-Ryul;Oh, Kuk-Ryul;Ha, Jong-Joo;Kim, Kee-Dong;Jeong, Sang-Man
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.2032-2037
    • /
    • 2010
  • 충청남도 서해안은 생태환경의 보고로서 갯벌, 사구, 해안습지 등 독특한 자연적 특성을 갖고 있는 지역이다. 그러나 다른 지역에 비해 대규모 간척 및 매립으로 인한 해양생태계 피해에 현저히 노출되어 있으며, 서해안 지역은 최근 산업화 및 관광권화가 진행되며 무분별하게 설치된 호안구조물은 그 기능을 상실하여 상당수가 설치전보다 오히려 서해안의 독특한 환경성과 관광성을 악화시키고 있어 서해안 특성을 고려한 대책이 요구된다. 본 연구에서는 서해안의 특성을 고려한 환경친화적 연안 호안구조물 리모델링을 위해 서해안의 침식특성에 대하여 분석하고자 한다. 분석 방법은 충청남도 서해안의 4개 시 군 29개 지점을 대상으로 1년여에 걸쳐 수행된 현장조사 결과를 바탕으로 서해안의 침식 현황을 파악하고, 기 조사된 서해안 지역의 침식에 대한 자료를 바탕으로 침식원인을 유형화하였다. 조사 분석결과 서해안의 대표적인 침식유형은 직립 급경사 호안구조물의 반사파로 인한 해빈침식(자갈화), 사구 토사포락, 직립 급경사 호안구조물 저면 세굴에 의한 호안구조물 붕괴, 방파제 설치에 의한 침식 등 대표적인 4가지 유형으로 분류할 수 있으며, 침식 유형별 발생지점 수는 총 29개 지점 중 각각 19개 지점, 13개 지점, 5개 지점, 4개 지점에서 나타났다. 이는 호안구조물이 미설치된 곳은 사구 토사포락에 의한 침식 발생빈도가 높았고, 반면에 호안구조물이 설치된 곳에서는 호안구조물의 기능 상실로 인한 해빈침식의 발생빈도가 높은 것으로 나타났다. 또한 조사지점으로 선정하였던 29개 모든 지점에서 토사유실로 인한 자갈화가 진행되어 서해안의 갯벌, 사구, 해안습지 등이 유실되고 있는 것으로 나타났으며, 이는 최근 기후변화에 따른 해수면 상승과 서해안 특성을 고려하지 않은 정형화된 직립 급경사 호안구조물의 역효과로 피해가 발생된 것으로 나타났다.

  • PDF

Simulation of Solitary Wave-Induced Dynamic Responses of Soil Foundation Around Vertical Revetment (고립파 작용하 직립호안 주변에서 지반의 동적응답에 관한 수치시뮬레이션)

  • Lee, Kwang-Ho;Yuk, Seung-Min;Kim, Do-Sam;Kim, Tae-Hyeong;Lee, Yoon-Doo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.6
    • /
    • pp.367-380
    • /
    • 2014
  • Tsunami take away life, wash houses away and bring devastation to social infrastructures such as breakwaters, bridges and ports. The targeted coastal structure object in this study can be damaged mainly by the tsunami force together with foundation ground failure due to scouring and liquefaction. The increase of excess pore water pressure composed of oscillatory and residual components may reduce effective stress and, consequently, the seabed may liquefy. If liquefaction occurs in the seabed, the structure may sink, overturn, and eventually increase the failure potential. In this study, the solitary wave was generated using 2D-NIT(Two-Dimensional Numerical Irregular wave Tank) model, and the dynamic wave pressure acting on the seabed and the estimated surface boundary of the vertical revetment. Simulation results were used as an input data in a finite element computer program(FLIP) for elasto-plastic seabed response. The time and spatial variations in excess pore water pressure, effective stress, seabed deformation, structure displacement and liquefaction potential in the seabed were estimated. From the results of the analysis, the stability of the vertical revetment was evaluated.

Bore-induced Dynamic Responses of Revetment and Soil Foundation (단파작용에 따른 호안과 지반의 동적응답 해석)

  • Lee, Kwang-Ho;Yuk, Seung-Min;Kim, Do-Sam;Kim, Tae-Hyeong;Lee, Yoon-Doo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.1
    • /
    • pp.63-77
    • /
    • 2015
  • Tsunami take away life, wash houses away and bring devastation to social infrastructures such as breakwaters, bridges and ports. The coastal structure targeted object in this study can be damaged mainly by the wave pressure together with foundation ground failure due to scouring and liquefaction. The increase of excess pore water pressure composed of oscillatory and residual components may reduce effective stress and, consequently, the seabed may liquefy. If liquefaction occurs in the seabed, the structure may sink, overturn, and eventually increase the failure potential. In this study, the bore was generated using the water level difference, its propagation and interaction with a vertical revetment analyzed by applying 2D-NIT(Two-Dimensional Numerical Irregular wave Tank) model, and the dynamic wave pressure acting on the seabed and the surface boundary of the vertical revetment estimated by this model. Simulation results were used as input data in a finite element computer program(FLIP) for elasto-plastic seabed response. The time and spatial variations in excess pore water pressure ratio, effective stress path, seabed deformation, structure displacement and liquefaction potential in the seabed were estimated. From the results of the analysis, the stability of the vertical revetment was evaluated.

Combined Wave Reflection and Diffraction near the Upright Breakwater (직립 방파제 주위에서 파랑의 반사 및 회절의 혼합)

  • Shin, Seung Ho;Gug, Seung Gi;Yeom, Won Gi;Lee, Joong Woo
    • Journal of Korean Port Research
    • /
    • v.5 no.1
    • /
    • pp.71-81
    • /
    • 1991
  • This study deals with the analytical and numerical solution for the combined wave reflection and diffraction near the impermeable rigid upright breakwater, subject to the excitation of a plane simple harmonic wave coming from infinity. Three cases are presented : a) the analytical solution near a thin semi-infinite breakwater, b) the analytical solution near the semi-infinite breakwaters of arbitrary edge angles, $30^{\circ},\;45^{\circ},\;and\;90^{\circ}$, c) the numerical solution near a detached thin breakwater the results are presented in amplification factor and wave height diagrams. Moreover, the amplification factors near the structure(2 wavelength before and behind the structure) are compared for the given cases. A finite difference technique for the numerical solution was applied to the integral equation obtained for the wave potential.

  • PDF

Comparative Study of Reliability Design Methods by Application to Donghae Harbor Breakwaters. 2. Sliding of Caissons (동해항 방파제를 대상으로 한 신뢰성 설계법의 비교 연구. 2. 케이슨의 활동)

  • Kim, Seung-Woo;Suh, Kyung-Duck;Oh, Young-Min
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.2
    • /
    • pp.137-146
    • /
    • 2006
  • This is the second of a two-part paper which describes comparison of reliability design methods by application to Donghae Harbor Breakwaters. In this paper, Part 2, we deal with sliding of caissons. The failure modes of a vertical breakwater, which consists of a caisson mounted on a rubble mound, include the sliding and overturning of the caisson and the failure of the rubble mound or subsoil, among which most frequently occurs the sliding of the caisson. The traditional deterministic design method for sliding failure of a caisson uses the concept of a safety factor that the resistance should be greater than the load by a certain factor (e.g. 1.2). However, the safety of a structure cannot be quantitatively evaluated by the concept of a safety factor. On the other hand, the reliability design method, for which active research is being performed recently, enables one to quantitatively evaluate the safety of a structure by calculating the probability of failure of the structure. The reliability design method is classified into three categories depending on the level of probabilistic concepts being employed, i.e., Level 1, 2, and 3. In this study, we apply the reliability design methods to the sliding of the caisson of the breakwaters of Donghae Harbor, which was constructed by traditional deterministic design methods to be damaged in 1987. Analyses are made for the breakwaters before the damage and after reinforcement. The probability of failure before the damage is much higher than the allowable value, indicating that the breakwater was under-designed. The probability of failure after reinforcement, however, is close to the allowable value, indicating that the breakwater is no longer in danger. On the other hand, the results of the different reliability design methods are in fairly good agreement, confirming that there is not much difference among different methods.

Preliminary Study on the Development of a Performance Based Design Platform of Vertical Breakwater against Seismic Activity - Centering on the Weakened Shear Modulus of Soil as Shear Waves Go On (직립식 방파제 성능기반 내진 설계 Platform 개발을 위한 기초연구 - 전단파 횟수 누적에 따른 지반 강도 감소를 중심으로)

  • Choi, Jin Gyu;Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.6
    • /
    • pp.306-318
    • /
    • 2018
  • In order to evaluate the seismic capacity of massive vertical type breakwaters which have intensively been deployed along the coast of South Korea over the last two decades, we carry out the preliminary numerical simulation against the PoHang, GyeongJu, Hachinohe 1, Hachinohe 2, Ofunato, and artificial seismic waves based on the measured time series of ground acceleration. Numerical result shows that significant sliding can be resulted in once non-negligible portion of seismic energy is shifted toward the longer period during its propagation process toward the ground surface in a form of shear wave. It is well known that during these propagation process, shear waves due to the seismic activity would be amplified, and non-negligible portion of seismic energy be shifted toward the longer period. Among these, the shift of seismic energy toward the longer period is induced by the viscosity and internal friction intrinsic in the soil. On the other hand, the amplification of shear waves can be attributed to the fact that the shear modulus is getting smaller toward the ground surface following the descending effective stress toward the ground surface. And the weakened intensity of soil as the number of attacking shear waves are accumulated can also contribute these phenomenon (Das, 1993). In this rationale, we constitute the numerical model using the model by Hardin and Drnevich (1972) for the weakened shear modulus as shear waves go on, and shear wave equation, in the numerical integration of which $Newmark-{\beta}$ method and Modified Newton-Raphson method are evoked to take nonlinear stress-strain relationship into account. It is shown that the numerical model proposed in this study could duplicate the well known features of seismic shear waves such as that a great deal of probability mass is shifted toward the larger amplitude and longer period when shear waves propagate toward the ground surface.