• Title/Summary/Keyword: 직교 기저행렬

Search Result 6, Processing Time 0.022 seconds

A Mathematical Implementation of OFDM System with Orthogonal Basis Matrix (직교 기저행렬을 이용하는 직교 주파수분할다중화의 수학적 구현)

  • Kang, Seog-Geun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.12
    • /
    • pp.2731-2736
    • /
    • 2009
  • In this paper, a new implementation method of OFDM (orthogonal frequency division multiplexing) system with an orthogonal basis matrix is developed mathematically. The basis matrix is based on the Haar basis but has an appropriate form for modulation of multiple subchannel signals of OFDM. It is verified that the new basis matrix can be expanded with a simple recursive algorithm. The order of synthesis matrix in the transmitter is increased by the factor of two with every expansion. Demodulation in the receiver is carried out by its inverse matrix, which can be generated recursively with the orthogonal basis matrix. It is shown that perfect reconstruction of original signals is possibly achieved in the proposed OFDMsystem.

Lattice Reduction Aided Preceding Based on Seysen's Algorithm for Multiuser MIMO Systems (다중 사용자 MIMO 시스템을 위한 Seysen 알고리즘 기반 Lattice Reduction Aided 프리코팅)

  • An, Hong-Sun;Mohaisen, Manar;Chang, Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.9C
    • /
    • pp.915-921
    • /
    • 2009
  • Lenstra-Lenstra-Lovasz (LLL) algorithm, which is one of the lattice reduction (LR) techniques, has been extensively used to obtain better bases of the channel matrix. In this paper, we jointly apply Seysen's lattice reduction Algorithm (SA), instead of LLL, with the conventional linear precoding algorithms. Since SA obtains more orthogonal lattice bases compared to those obtained by LLL, lattice reduction aided (LRA) precoding based on SA algorithm outperforms the LRA precoding with LLL. Simulation results demonstrate that a gain of 0.5dB at target BER of $10^{-5}$ is achieved when SA is used instead of LLL or the LR stage.

Recognition of Occluded Face (가려진 얼굴의 인식)

  • Kang, Hyunchul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.6
    • /
    • pp.682-689
    • /
    • 2019
  • In part-based image representation, the partial shapes of an object are represented as basis vectors, and an image is decomposed as a linear combination of basis vectors where the coefficients of those basis vectors represent the partial (or local) feature of an object. In this paper, a face recognition for occluded faces is proposed in which face images are represented using non-negative matrix factorization(NMF), one of part-based representation techniques, and recognized using an artificial neural network technique. Standard NMF, projected gradient NMF and orthogonal NMF were used in part-based representation of face images, and their performances were compared. Learning vector quantizer were used in the recognizer where Euclidean distance was used as the distance measure. Experimental results show that proposed recognition is more robust than the conventional face recognition for the occluded faces.

MUSIC-Based Direction Finding through Simple Signal Subspace Estimation (간단한 신호 부공간 추정을 통한 MUSIC 기반의 효과적인 도래방향 탐지)

  • Choi, Yang-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.4
    • /
    • pp.153-159
    • /
    • 2011
  • The MUSIC (MUltiple SIgnal Classification) method estimates the directions of arrival (DOAs) of the signals impinging on a sensor array based on the fact that the noise subspace is orthogonal to the signal subspace. In the conventional MUSIC, an estimate of the basis for the noise subspace is obtained by eigendecomposing the sample matrix, which is computationally expensive. In this paper, we present a simple DOA estimation method which finds an estimate of the signal subspace basis directly from the columns of the sample matrix from which the noise power components are removed. DOA estimates are obtained by searching for minimum points of a cost function which is defined using the estimated signal subspace basis. The minimum points are efficiently found through the Brent method which employs parabolic interpolation. Simulation shows that the simple estimation method virtually has the same performance as the complex conventional method based on the eigendecomposition.

3-User Dirty Paper Precoding (세 명의 다중 사용자 채널에서의 더티 페이퍼 전처리 코딩)

  • Lee, Moon-Ho;Park, Ju-Yong;Shin, Tae-Chol
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.2
    • /
    • pp.32-38
    • /
    • 2012
  • In this paper, we design on nonliner 3 user Dirty Paper Precoding for MIMO adjacant interference signal cancellation based on 3 GPP LTE Release 10. In this paper, in order to reduce the inter-channel interference at the transmitted side, we propose the Dirty Paper Precoding scheme for 3-user MIMO wireless systems using LQ decomposition and Gram-Schmidt algorithm based in its orthonormal basis.

ADPSS Channel Interpolation and Prediction Scheme in V2I Communication System (V2I 통신 시스템에서 ADPSS 채널 보간과 예측 기법)

  • Chu, Myeonghun;Moon, Sangmi;Kwon, Soonho;Lee, Jihye;Bae, Sara;Kim, Hanjong;Kim, Cheolsung;Kim, Daejin;Hwang, Intae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.8
    • /
    • pp.34-41
    • /
    • 2017
  • Vehicle to Infrastructure(V2I) communication means the technology between the vehicle and the roadside unit to provide the Intelligent Transportation Systems(ITS) and Telematic services. The vehicle collects information about the probe data through the evolved Node B(eNodeB) and after that eNodeB provides road conditions or traffic information to the vehicle. To provide these V2I communication services, we need a link adaptation technology that enables reliable and higher transmission rate. The receiver transmits the estimated Channel State Information(CSI) to transmitter, which uses this information to enable the link adaptation. However, due to the rapid channel variation caused by vehicle speed and the processing delay between the layers, the estimated CSI quickly becomes outdated. For this reason, channel interpolation and prediction scheme are needed to achieve link adaptation in V2I communication system. We propose the Advanced Discrete Prolate Spheroidal Sequence(ADPSS) channel interpolation and prediction scheme. The proposed scheme creates an orthonomal basis, and uses a correlation matrix to interpolate and predict channel. Also, smoothing is applied to frequency domain for noise removal. Simulation results show that the proposed scheme outperforms conventional schemes with the high speed and low speed vehicle in the freeway and urban environment.