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요 약

본 논문에서는 직교 기저행렬을 이용한 직교 주파수분할다중화 시스템의 새로운 구현방안이 수학적으로 개발

된다. 직교 기저행렬은 Haar 기저행렬을 기본으로 하고 있으나 직교 주파수분할다중화의 다중 부채널 신호를 변조

하기에 적당한 형태를 갖추고 있다. 여기서는 새로운 기저행렬이 간단한 재귀알고리즘에 의하여 확장될 수 있음이

증명된다. 그리고 송신기 조합행렬의 차수는 확장에 의하여 두 배로 증가된다. 수신기에서 복조는 직교 기저행렬의

재귀에 의하여 생성되는 조합행렬의 역행렬에 의하여 수행된다. 따라서 제안된 직교 주파수분할다중화 시스템에

서는 원 신호의 완벽한 재생이 가능함을 알 수 있다.

ABSTRACT

In this paper, a new implementation method of OFDM (orthogonal frequency division multiplexing) system with an orthogonal basis

matrix is developed mathematically. The basis matrix is based on the Haar basis but has an appropriate form for modulation of multiple

subchannel signals of OFDM. It is verified that the new basis matrix can be expanded with a simple recursive algorithm. The order of

synthesis matrix in the transmitter is increased by the factor of two with every expansion. Demodulation in the receiver is carried out by its

inverse matrix, which can be generated recursively with the orthogonal basis matrix. It is shown that perfect reconstruction of original signals

is possibly achieved in the proposed OFDM system.
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Ⅰ. Introduction

Orthogonal frequency division multiplexing (OFDM)

has been considered as one of the most promising

transmission scheme in wireless communications. It has

been adopted for various wireless communication

standards such as IEEE 802.11g [1] of high-speed wireless

local area networks (WLANs), European digital audio/

video broadcasting (DAB/DVB) [2],[3]. ECMA- 368 [4]

defines in detail the structure of multi-band OFDM

(MB-OFDM) for WiMedia ultra-wideband (UWB)

communication systems.

Due to orthogonality between the transform pair and

feasibility of a fast algorithm, discrete Fourier transform

(DFT) has usually been employed to modulate a block of

parallelized signals in the transmitter and separate each

subchannel signal out of the received sampled waveforms

[5].

The DFT is only a special case of orthogonal basis

matrix. In this paper, a new implementation method of

OFDM system with orthogonal basis matrix is studied in

mathematical manner. The new basis matrix is similar to the

Haar matrix but has an appropriate form to modulate

multiple subchannel signals. And a generalized algorithm to

find inverse matrix of the basis has been presented. The

orders of synthesis matrix in the transmitter and analysis

matrix in the receiver can be increased with a simple

recursive algorithm. It is proved that perfect reconstruction

of original data can be achieved in the proposed OFDM

system.

This paper is organized as follows. In Section II, a

mathematical structure of the conventional OFDM is

introduced briefly. An orthogonal basis matrix and its

recursive expansion are studied in Section III. In Section

IV, a new method of implementing an OFDM system with

the orthogonal basis matrix is provided and analyzed.

Finally, some concluding remarks and further studies

about the proposed system are stated in Section V.

Ⅱ. The Conventional OFDM System

An orthogonal basis matrix of great interest in digital

signal processing (DSP) is DFT matrix [6]. It is an N×N

square matrix defined as

 











  ⋯  ⋯ 
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⋮ ⋮ ⋱ ⋮ ⋮ ⋮
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⋮ ⋮ ⋯ ⋮ ⋱ ⋮

 
⋯

⋯ 




(1)

for 0 ≤k, n ≤ N-1, where 
    is the element

of the kth row and the nth column, respectively.

In contemporary implementation of an OFDM system,

IDFT is exploited to modulate a set of complex signals in the

transmitter. Thus, the transmitted signals of an OFDM

symbol, x = [x0, x1, …, xN-1]
T is

  

 , (2)

where N is the number of subchannels and W* denotes the

conjugate of W. And X = [X0, X1, …, XN-1]
T

is parallelized

input data. The superscript, T, denotes transpose of a

matrix.

Demodulation of received OFDM symbols is carried out

by the DFT. Hence, the recovered signals are given as

 ⋅ , (3)

where y = [y0, y1, …, yN-1] represents sampled waveform of

the received signals. Thus, the overall transfer function of

the conventional OFDM system is

DFT 

⋅. (4)
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Since the orthogonality principle is satisfied with DFT

pair, that is,WW*
= NI, where I is the N×N identity matrix,

perfect reconstruction of the original signals can be

achieved.

Ⅲ. A New Basis Matrix

Another well known orthogonal basis in signal

processing is Haar matrix. It has been known that the matrix

of order n has 2n elements in each row and column. And

order of the matrix can be increased recursively [7] as

 ⊗, (5)

where

   
  . (6)

The new orthogonal basis matrix based on the Haar basis

should have an appropriate form of frequency allocation for

multiple subchannels of an OFDM symbol in the

transmitter. Let us define a new set of basis matrices as

follow;

 

  

  , (7)

 

  

  , (8)

⋮

 

  

  . (9)

It is verified that the matrices are expanded with a simple

recursive algorithm. And the order of the basis matrices is

increased by a factor of two with every expansion. Since

 consists of  and 


  

, each  can

be found by 


  

 and sign inversion. Hence,

the number of complex computations can be reduced

significantly.

Let  for 0≤k≤K-1, where , be the kth

row vector of  . Then, the inner product of 

and  is computed as

〈〉
 



 
     

 ≠
,(10)

where  is the rth element of  . Thus,

 ⋯ ∈  (11)

are linearly independent over C, where   is the set of all

K-tuple complex numbers [8]. In addition, the new basis is

an orthogonal matrix in   which is the set of all K×K

matrices over the set of all complex numbers.

Ⅳ. OFDM System with the Orthogonal

Basis Matrix

As it has been analyzed, the presented basis matrices have

an appropriate structure for parallel transmission system. An

OFDM system designed with the new basis matrices is

illustrated in Fig. 1, where S/P and P/S represent

serial-to-parallel and parallel-to-serial converter,

respectively. The signal mapper converts each parallelized

L(=log2M)-tuple bit stream to a complex signal on a

constellation of M-ary modulation such as quadrature

amplitude modulation (QAM).

Transmitted sequence of the OFDM system,

 ′   
′ 

′⋯  
′   , is composed of


′   , where  is the kth element of
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그림 1. 새로운 기저행렬을 이용하는 직교 주파수분할다중화의 블록도.
Fig. 1. A block diagram of OFDM system with the new basis matrix.

PN(z)X(z) and can be represented as

 
 

  



 . (12)

X(z) = [X0(z), X1(z), …, XK-1(z)]
T

is parallelized K-tuple

complex data. The sampled waveform of received signals,

R(z) = [R0(z), R1(z), …, RK-1(z)], where

  
′ , 0≤k≤K-1, (13)

can be demodulated by analysis basis matrix QN(z) as

follow;

OFDM 


  . (14)

Let TN(z) =QN(z)PN(z) in (14), thenTN(z) can be divided into

two parts as

 
  











  




 
≠










(15)

The second term of right-hand side of (15) is interchannel

interference, which is effect of the jth subchannel signal to

the ith subchannel.

To achieve perfect reconstruction of the original signals,

the transfer function TOFDM(z) should be represented as

  ⋅, (16)

where I is the K×K identity matrix and T(z) = [T0(z), T1(z),

…, TK-1(z)]
T

for

 




 (17)
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 
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


  


  


 

  





  


  




. (18)

represents coefficients of the transfer function. Hence, the

analysis matrix at the receiver may be inverse of the

synthesis matrix given as (18).

Let z = ejw, then

 
†  , (19)

where 
†  

   
 .

And †denotes transpose of complex conjugate of a matrix.

It is noted that the recursive algorithm can be applied to

build the inverse matrix, too. The analysis matrix can be

found from the corresponding synthesis matrix with little

computational complexity. It is, therefore, considered that

the proposed implementation method does not require

serious increase in the computational complexity.

Ⅴ. Conclusions and Further Studies

In this paper, a new implementation method of OFDM

system with an orthogonal basis matrix has been studied

mathematically. The matrix has a similar form to the Haar

basis but can be well adapted for modulation of multiple

subchannel signals. With a simple recursive algorithm, the

order of synthesis matrix is increased by the factor of two.

The analysis matrix of order n can be found by the inverse

of the corresponding synthesis matrix. This implies that

perfect reconstruction of the original data is possibly

achieved.

For practical applications, error performance of the

proposed OFDM system in additive white Gaussian noise

and multipath fading channels has to be computed. In

addition, computational complexity and spectral

characteristics of the proposed system should be analyzed

in future.
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