• Title/Summary/Keyword: 지형의 기복

Search Result 161, Processing Time 0.031 seconds

A Study on fire investigation & calorie analysis of main trees in Go-sung wildfire land (고성산불지역에서의 화재조사와 주요수목의 열량분석에 관한 연구)

  • 김동현;고재선;최세환;김광일
    • Fire Science and Engineering
    • /
    • v.13 no.1
    • /
    • pp.31-36
    • /
    • 1999
  • This paper contained an actual investigation of a wildfire which broke out on 23 April R 1996 in Go-sung Kun, Kang-won Do examined the calories and the total calories of the m main trees which were Quercus variabillis and Pinus densiflora. There were three important f fire spread factors which were weather condition, fuel condition and terrain. The weather c condition was the most dangerous alarm level. The fuel condition having a high calory v value, Pinus densiflora made up 63% of the forest. Terrain of the forest were mostly c covered by steep slopes and complicated line construction. This experimental calorie study a about Pinus densiflora and Quercus variabillis showed that Pinus densiflora had 13,34kcal/g a and Quercus variabillis had 9.64kcal/g. In the case of weight loss of pyrolysis, Pinus densiflora had a higher percentage rated 35.71~10.05% than Quercus variabillis. Accordingly, Pinus densiflora showed lower than Quercus variabillis in heat resistance.

  • PDF

Micro-Landform Classification and Topographic Property of Tidal Flat in Julpo-Bay Using Satellite Image (위성영상을 이용한 줄포만 간석지의 미지형 분류와 지형적특성)

  • 조명희;조화룡
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.3
    • /
    • pp.217-225
    • /
    • 1999
  • Through the ISODATA method of unsupervised classification, the micro-landform of Julpo-Bay tidal flat was classified into mudflat, mixedflat, and sandflat using Landsat TM image. Each showed an apparent differences in its topographical characteristics and grain size composition. Mudflat occupied innermost part of the tidal flat, sandflat located closest to the entrance of the bay and mixed flat in the center is. For example, mudlflats are formed with flat faces and tidal channel. Topographically, mudflat consist of tidal channels and flat intermediate surface. Its average relief of them is about 2 meter. Meanwhile, sandflat comprised very flat landform with well-developed ripple marks of less than 10cm average relief. And Mixed flat stood in between. In addition, Out of 7 bands of Landsat TM images, band 5 and 7 provided the highest power level for discrimination between micro-landforms of the tidal flat. Band 4 showed a clear boundary between the land and tidal flat, and band 3 did its share by showing well a boundary between the sea surface and the tidal flat.

Downscaling of Sunshine Duration for a Complex Terrain Based on the Shaded Relief Image and the Sky Condition (하늘상태와 음영기복도에 근거한 복잡지형의 일조시간 분포 상세화)

  • Kim, Seung-Ho;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.233-241
    • /
    • 2016
  • Experiments were carried out to quantify the topographic effects on attenuation of sunshine in complex terrain and the results are expected to help convert the coarse resolution sunshine duration information provided by the Korea Meteorological Administration (KMA) into a detailed map reflecting the terrain characteristics of mountainous watershed. Hourly shaded relief images for one year, each pixel consisting of 0 to 255 brightness value, were constructed by applying techniques of shadow modeling and skyline analysis to the 3m resolution digital elevation model for an experimental watershed on the southern slope of Mt. Jiri in Korea. By using a bimetal sunshine recorder, sunshine duration was measured at three points with different terrain conditions in the watershed from May 15, 2015 to May 14, 2016. The brightness values of the 3 corresponding pixel points on the shaded relief map were extracted and regressed to the measured sunshine duration, resulting in a brightness-sunshine duration response curve for a clear day. We devised a method to calibrate this curve equation according to sky condition categorized by cloud amount and used it to derive an empirical model for estimating sunshine duration over a complex terrain. When the performance of this model was compared with a conventional scheme for estimating sunshine duration over a horizontal plane, the estimation bias was improved remarkably and the root mean square error for daily sunshine hour was 1.7hr, which is a reduction by 37% from the conventional method. In order to apply this model to a given area, the clear-sky sunshine duration of each pixel should be produced on hourly intervals first, by driving the curve equation with the hourly shaded relief image of the area. Next, the cloud effect is corrected by 3-hourly 'sky condition' of the KMA digital forecast products. Finally, daily sunshine hour can be obtained by accumulating the hourly sunshine duration. A detailed sunshine duration distribution of 3m horizontal resolution was obtained by applying this procedure to the experimental watershed.

MT Response of a Small Island Model with Deep Sea and Topography (깊은 바다와 지형을 고려한 소규모 섬 모델의 MT 반응 연구)

  • Kiyeon Kim;Seong Kon Lee;Seokhoon Oh;Chang Woo Kwon
    • Geophysics and Geophysical Exploration
    • /
    • v.27 no.1
    • /
    • pp.37-50
    • /
    • 2024
  • The magnetotelluric (MT) survey can be affected by external environmental factors. In particular, when acquiring MT data in islands, it is essential to consider the combined effect of topography and sea to understand the results and make accurate interpretations. To analyze the MT response (apparent resistivity, phase) with consideration of the effect of topography and sea, a small cone-shaped island model surrounded by deep sea was created. Two-dimensional (2-D) and three-dimensional (3-D) forward modeling were performed on the terrain model considering topography and the island model considering both topography and sea. The 2-D MT response did not reflect the topographic and sea effect of the direction orthogonal to the 2-D profile. The 3-D MT response included topographic and sea effects in all directions. The XY and YX components of the apparent resistivity were separated on undulating topography, such as a hill. A conductor at 1 km below sea level could be distinguished from topographic and sea effects in the MT response, and low resistivity anomaly was attenuated at greater depths. This study will facilitate understanding of field data measured on small islands.

Relationship between Solar Radiation in Complex Terrains and Shaded Relief Images (복잡지형에서의 일사량과 휘도 간의 관계 구명)

  • Yun, Eun-Jeong;Kim, Dae-Jun;Kim, Jin-Hee;Kang, Dae-Gyoon;Kim, Soo-Ock;Kim, Yongseok
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.283-294
    • /
    • 2021
  • Solar radiation is an important meteorological factor in the agricultural sector. The ground exposed to sunlight is highly influenced by the surrounding terrains especially in South Korea where the topology is complex. The solar radiation on an inclined surface is estimated using a solar irradiance correction factor for the slope of the terrain along with the solar radiation on a horizontal surface. However, such an estimation method assumes that there is no barrier in surroundings, which blocks sunlight from the sky. This would result in errors in estimation of solar radiation because the effect of shading caused by the surrounding terrain has not been taken into account sufficiently. In this study, the shading effect was simulated to obtain the brightness value (BV), which was used as a correction factor. The shaded relief images, which were generated using a 30m-resolution digital elevation model (DEM), were used to derive the BVs. These images were also prepared using the position of the sun and the relief of the terrain as inputs. The gridded data where the variation of direct solar radiation was quantified as brightness were obtained. The value of cells in the gridded data ranged from 0 (the darkest value) to 255 (the brightest value). The BV analysis was performed using meteorological observation data at 22 stations installed in study area. The observed insolation was compared with the BV of each point under clear and cloudless condition. It was found that brightness values were significantly correlated with the solar radiation, which confirmed that shading due to terrain could explain the variation in direct solar radiation. Further studies are needed to accurately estimate detailed solar radiation using shaded relief images and brightness values.

Numerical analysis of geomorphic changes in rivers due to dam pulse discharge of Yeongju Dam (댐 펄스방류로 인한 하천의 지형변화 수치모의 분석(영주댐 중심으로))

  • Baek, Tae Hyoa;Jang, Chang-Laeb;Lee, Kyung Su
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.871-881
    • /
    • 2023
  • This study investigates the geomorphic changes and Bed Relief Index of the river downstream of the Yeongju Dam by Nays2DH, a two-dimensional numerical model, in order to grasp the dynamics of the downstream river while applying various flow patterns such as pulse discharge. It shows that the geomorphic and the bed elevations changes are the largest under the condition of the normalized pulse discharge. The total change in the riverbed is 29.88 m for uniform flow, 27.46 m for normalized hydrograph, 29.63 m for pulse flow and 31.87 m for pulse flow with normalized hydrograph which result in the largest variation in scour and deposition. The Bed Relief Index (BRI) increases with time under conditions of uniform flow, pulse flow and pulse flow with normalized hydrograph. However, BRI increased rapidly until 30 hrs after the peak flow (14 hrs), but decreased from 56 hrs under the condition of normalized hydrograph. Therefore, the condition of normalized hydrograph gives greater dynamics than the condition of a single flood or constant flow, and the dynamics increase downstream than upstream, resulting in an effect on improving the environment of the river downstream of the dam.

Seafloor Features around the Hupo Bank on the East Sea (동해 후포퇴(Hupo Bank) 주변의 정밀 해저지형 연구)

  • Choi, Sung-Ho;Ahn, Young-Kil;Han, Hyuk-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.93-96
    • /
    • 2008
  • We analyze a precise seabed feature around the Hupo Bank by using Multi-beam echosounder. Multi-beam echosounder system can observe the topography undulation according to the navigation of the survey ship by shooting wide beam. It is possible to embody a precision seabed feature because it can be make high density of incompletion depth sounding between survey lines. Through this survey, there is the Hupo Bank which is 84 km long, 1-15 km wide, 5.3-160 m deep in the center, at the west is moat, at the east is scarp and submarine canyon. The top of the Hupo Bank is the Wangdol reef that has 5.3 m in depth of water at least. Moat in survey area is 30 m long, and 30-40 m wide and has a depressed channel. The gap of depth of water in scarp is approximately 60 m and shows a characteristic of cuttig plane. Submarine canyon is 3.5 - 13.5 km wide.

  • PDF

Development of Optimized Flow Apportioning Algorithm Using Natural Stream Morphology (자연하천 형상을 이용한 최적 흐름분배 알고리즘의 개발)

  • Kim, Sang-Hyun;Lee, Hak-Su;Kang, Chang-Yong;Kim, Nam-Won
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.4 s.129
    • /
    • pp.345-358
    • /
    • 2002
  • The flow apportioning algorithms with digital elevation models have been developed to reflect reasonable flow divergence properties but they showed several defects related to the connectivity of channel cells, various divergence features along to local topography and channel cells' size etc. Topographic data used by existing flow apportioning algorithms are flow accumulation area and local slope. However, the size and location of channel cells which play the dominant role in the flow pathway were not properly considered. Therefore, a new flow apportioning algorithm considering various flow divergence characteristics in the complicate terrain is proposed. The GA optimization scheme is used to represent the location and scale of the channel pixel. Improved result can be obtained by using both a new flow apportioning algorithm and optimization.

Assessment of DEM Generated by Stereo C-band and X-band SAR images using Radargrammetry (Radargrammetry를 이용한 C-밴드 및 X-밴드 SAR 위성영상의 DEM 생성 평가)

  • Song, Yeong Sun;Kim, Gi Hong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.4
    • /
    • pp.109-116
    • /
    • 2013
  • To extract the 3D geometric information from SAR(Synthetic Aperture Radar) images, two different techniques, interferometric SAR and radargrammetry, have been widely used. InSAR is most widely used for the generation of precise DEM(Digital Elevation Model) until now. But, Interferometric SAR requires severe temporal correlation over areas covered with vegetation and high relief areas. Because radargrammetry is less sensible to temporal correlation, it can provide better results than interferometric SAR in certain, especially X-band SAR. In this paper, we assess the properties of DEMs generated by radargrammetry using stereo C-band RADARSAT-1 images and X-band TerraSAR-X images.

Reference Points Selection for Interpolation in Digital Elevation Model (수치표고모델의 보간기준점 선정에 관한 연구)

  • 최병길;김욱남;진세일
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.21 no.2
    • /
    • pp.131-136
    • /
    • 2003
  • The method that selects reference points for interpolation is very important in Digital Elevation Model. However, there is no definition of an accurate standard until now, so users select the reference points for interpolation at their option. This paper aims to study on the accurate selection of the reference points for interpolation of DEM. This paper analyzed the method using the number of points and the reference points selection method by using the average distance calculated, from irregular points. Based on the analysis of the results, it shows that the Kriging method applying of the average distance is more efficient in construction of DEM.