• Title/Summary/Keyword: 지하

Search Result 9,229, Processing Time 0.037 seconds

Proposal of Agricultural Drought Re-evaluation Method using Long-term Groundwater Level Monitoring Data (장기 지하수위 관측자료를 활용한 농업가뭄 재평가 방안 제언)

  • Jeong, ChanDuck;Lee, ByungSun;Lee, GyuSang;Kim, JunKyum
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.4
    • /
    • pp.27-43
    • /
    • 2021
  • Since climate factors, such as precipitation, temperature, etc., show repeated patterns every year, it can be said that future changes can be predicted by analyzing past climate data. As with groundwater, seasonal variations predominate. Therefore, when a drought occurs, the groundwater level is also lowered. Thus, a change in the groundwater level can represent a drought. Like precipitation, groundwater level changes also have a high correlation with drought, so many researchers use Standard Groundwater Level Index (SGI) to which the Standard Precipitation Index (SPI) method is applied to evaluate the severity of droughts and predict drought trends. However, due to the strong interferences caused by the recent increase in groundwater use, it is difficult to represent the droughts of regions or entire watersheds by only using groundwater level change data using the SPI or SGI methods, which analyze data from one representative observation station. Therefore, if the long-term groundwater level changes of all the provinces of a watershed are analyzed, the overall trend can be shown even if there is use interference. Thus, future groundwater level changes and droughts can be more accurately predicted. Therefore, in this study, it was confirmed that the groundwater level changes in the last 5 years compared with the monthly average groundwater level changes of the monitoring wells installed before 2015 appeared similar to the drought occurrence pattern. As a result of analyzing the correlation with the water storage yields of 3,423 agricultural reservoirs that do not immediately open their sluice gates in the cases of droughts or floods, it was confirmed that the correlation was higher than 56% in the natural state. Therefore, it was concluded that it is possible to re-evaluate agricultural droughts through long-term groundwater level change analyses.

Hydro-Mechanical Modeling of Fracture Opening and Slip using Grain-Based Distinct Element Model: DECOVALEX-2023 Task G (Benchmark Simulation) (입자기반 개별요소모델을 이용한 암석 균열의 수리역학 거동해석: 국제공동연구 DECOVALEX-2023 Task G (Benchmark Simulation))

  • park, Jung-Wook;Park, Chan-Hee;Lee, Changsoo
    • Tunnel and Underground Space
    • /
    • v.31 no.4
    • /
    • pp.270-288
    • /
    • 2021
  • We proposed a numerical method to simulate the hydro-mechanical behavior of rock fracture using a grain-based distinct element model (GBDEM) in the paper. As a part of DECOVALEX-2023 Task G, we verified the method via benchmarks with analytical solutions. DECOVALEX-2023 Task G aims to develop a numerical method to estimate the coupled thermo-hydro-mechanical processes within the crystalline rock fracture network. We represented the rock sample as a group of tetrahedral grains and calculated the interaction of the grains and their interfaces using 3DEC. The micro-parameters of the grains and interfaces were determined by a new methodology based on an equivalent continuum approach. In benchmark modeling, a single fracture embedded in the rock was examined for the effects of fracture inclination and roughness, the boundary stress condition and the applied pressure. The simulation results showed that the developed numerical model reasonably reproduced the fracture slip induced by boundary stress condition, the fracture opening induced by fluid injection, the stress distribution variation with fracture inclination, and the fracture roughness effect. In addition, the fracture displacements associated with the opening and slip showed good agreement with the analytical solutions. We expect the numerical model to be enhanced by continuing collaboration and interaction with other research teams of DECOVALEX-2023 Task G and validated in further study experiments.

Interpretation of Electrical Resistivity Tomogram with Contents of Clay Minerals for the Land Creeping Area (점토광물 함유량을 고려한 땅밀림 산사태 지역의 전기비저항 자료의 해석)

  • Kim, Jeong-In;Kim, Ji-Soo;Lee, Sun-Joong;Cho, Kyoung-Seo;Kim, Jong-Woo
    • The Journal of Engineering Geology
    • /
    • v.31 no.2
    • /
    • pp.187-197
    • /
    • 2021
  • Clay mineral content of weathered zone is a key parameter for landslide studies. Electrical resistivity tomography is usually performed to delineate the geometry of complex landslides and to identify the sliding surface. In clay-bearing weathered zone, parallel resistivity Archie equation is employed to investigate the effect of conductivity added (resistivity reduced) by clay minerals of kaolinite and montmorillonite, which is dependent on their specific surface area and cation exchange capacities (CEC). A decrease of overall resistivity and apparent formation factor is observed with increasing pore-water resistivity, significantly in montmorillonite. Formation factor is found decreased with increasing porosity and decreasing cementation factor. Parallel Archie equation was applied to the electrical resistivity data from the test area (Sinjindo-ri, Taean-gun, Chungcheongnam-do, Korea) which experienced land creeping in the year of 2014. A panel test with varying clay-mineral contents provides the best fit section when the theoretical section constructed with the assumed contents approaches the field section, from which the clay-mineral content of the weathered zone is estimated to be approximately 10%. Resistivity interpretation schemes including the clay mineral contents for land creeping studies explored in this paper can be challenged more when porosity, saturation, and pore-water resistivity are provided and they are included in the numerical resistivity modeling.

Conceptual Design and Displacement Recognition Performance Verification of Displacement Measurement System for Retaining Wall Structure Based on Laser Sensor (레이저 센서 기반 흙막이 구조체 변위 계측 시스템의 개념 디자인 및 변위 인식 성능 검증)

  • Kim, Jun-Sang;Lee, Gil-yong;Kim, Young Suk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.1
    • /
    • pp.64-72
    • /
    • 2022
  • The retaining wall structure is essential for construction work that performs underground excavation. Displacement management of the retaining wall structure is important regardless of the size of the construction. However, in the case of small-scale construction sites with an excavation depth of less than 10m, displacement management of retaining wall structure not properly performed due to problems such as 1) companies' smallness, 2) lack of capacity of construction managers, 3) complexity of installation, dismantling and displacement of measuring instruments. As a result of analyzing previous research, it was analyzed that it is difficult to apply this to a small - scale construction site because most of the previous research has problems in using an expensive 3D scanner or installing many measuring instruments. This study aims to propose a conceptual design of a displacement measurement system for retaining wall structure based on laser sensor and to verify the displacement recognition performance of core technology applied to the conceptual design. A conceptual design was proposed using a 2D laser scanner. As a result of verifying the displacement recognition of the 2D laser scanner, a displacement of 15mm was analyzed to be sufficiently understandable. In the future, if the proposed conceptual design is developed and applied to the small-scale construction site, it is thought that it will contribute to the reduction of safety accidents at small-scale construction sites.

A Study on the Management of the Sectional Superficies for the Realization of 3D Cadastre (입체지적 구현을 위한 구분지상권의 관리에 관한 연구)

  • Kim, HyunYoung;Lih, BongJoo
    • Journal of Cadastre & Land InformatiX
    • /
    • v.51 no.2
    • /
    • pp.107-123
    • /
    • 2021
  • In recent years, due to the continuous density and urbanization of space, the expansion of awareness of rights, the need for landscape conservation, and the development of construction technology, the conventional flat land use has been deviated from the conventional flat land use, and the transmission line, urban railway, parking lot, communal district, underground shopping mall, pipeline, etc. Although 3D spatial activities are carried out in the form of 3D space, there are considerable difficulties in administration to manage the 3D use of land due to the inadequacy of related regulations. In this background, for the administration that can manage Sectional Superficies, which is a representative case of 3D spatial use of parcels, which is a registered unit of land, first, the law on the establishment and management of spatial information, and cadastral re-examination from the legal and institutional aspects Standardization of 3D space registration through amendments to the Special Act, etc. and the formation of consensus among related departments. Second, in technical and administrative aspects, the registration of Sectional Superficies based on cadastral survey results, establishment of a platform for integrated management of location and attribute data, and registration method was found to be in need of improvement. As suggested in this study, by registering and managing Sectional Superficies, it is possible to manage various 3D land use of not only ground space or surface space but also underground space. It is expected to be able to register and manage lot-based 3D land use efficiently.

Expected Segmentation of the Chugaryung Fault System Estimated by the Gravity Field Interpretation (추가령단층대의 중력장 데이터 해석)

  • Choi, Sungchan;Choi, Eun-Kyeong;Kim, Sung-Wook;Lee, Young-Cheol
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.743-752
    • /
    • 2021
  • The three-dimensional distribution of the fault was evaluated using gravity field interpretation such as curvature analysis and Euler deconvolution in the Seoul-Gyeonggi region where the Chugaryeong fault zone was developed. In addition, earthquakes that occurred after 2000 and the location of faults were compared. In Bouguer anomaly of Chugaryeong faults, the Pocheon Fault is an approximately 100 km fault that is extended from the northern part of Gyeonggi Province to the west coast through the central part of Seoul. Considering the frequency of epicenters is high, there is a possibility of an active fault. The Wangsukcheon Fault is divided into the northeast and southwest parts of Seoul, but it shows that the fault is connected underground in the bouguer anomaly. The magnitude 3.0 earthquake that occurred in Siheung city in 2010 occurred in an anticipated fault (aF) that developed in the north-south direction. In the western region of the Dongducheon Fault (≒5,500 m), the density boundary of the rock mass is deeper than that in the eastern region (≒4,000 m), suggesting that the tectonic movements of the western and eastern regions of the Dongducheon Fault is different. The maximum depth of the fracture zone developed in the Dongducheon Fault is about 6,500 m, and it is the deepest in the research area. It is estimated that the fracture zone extends to a depth of about 6,000 m for the Pocheon Fault, about 5,000 m for the Wangsukcheon Fault, and about 6,000 m for the Gyeonggang Fault.

An Experimental Study on the Performance of Expandable Steel Pipe Pile (확장형 강관말뚝의 성능에 대한 실험적 연구)

  • Kim, Junghoon;Kim, Uiseok;Kim, Jiyoon;Kang, Minkyu;Choi, Hangseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.1
    • /
    • pp.39-49
    • /
    • 2022
  • Expandable steel pipe piles are installed by inserting expansion equipment to increase the cross-sectional area of steel pipes, which can improve the pile performance compared to micro-piles. In this paper, a hydraulic expansion device was developed to expand steel pipe piles in practice. A series of laboratory and field tests were conducted to verify the performance of the developed expansion device to expand steel pipes. The expansion capability and expandable range was evaluated by measuring the strain and expansion time at the maximum pressure of the hydraulic expansion device. The thinner steel pipe, the larger strain but longer expansion time required in the test. For example, the 4.0-mm-thick steel pipe showed strain reduction by 30% and a decrease in the required expansion time by 40% compared to the 2.9-mm-thick steel pipe. In addition, in-situ expansion tests were performed to verify the expandability of steel pipes under the ground, and the exhumed specimen showed clear expanded sections. The structural integrity was determined by comparing the material performance the original and expanded specimens.

Voronoi Grain-Based Distinct Element Modeling of Thermally Induced Fracture Slip: DECOVALEX-2023 Task G (Benchmark Simulation) (Voronoi 입자기반 개별요소모델을 이용한 암석 균열의 열에 의한 미끄러짐 해석: 국제공동연구 DECOVALEX-2023 Task G(Benchmark simulation))

  • park, Jung-Wook;Park, Chan-Hee;Lee, Changsoo
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.593-609
    • /
    • 2021
  • We proposed a numerical method for the thermo-mechanical behavior of rock fracture using a grain-based distinct element model (GBDEM) and simulated thermally induced fracture slip. The present study is the benchmark simulation performed as part of DECOVALEX-2023 Task G, which aims to develop a numerical method to estimate the coupled thermo-hydro-mechanical processes within the crystalline rock fracture network. We represented the rock sample as an assembly of Voronoi grains and calculated the interaction of the grains (blocks) and their interfaces (contacts) using a distinct element code, 3DEC. Based on an equivalent continuum approach, the micro-parameters of grains and contacts were determined to reproduce rock as an elastic material. Then, the behavior of the fracture embedded in the rock was characterized by the contacts with Coulomb shear strength and tensile strength. In the benchmark simulation, we quantitatively examined the effects of the boundary stress and thermal stress due to heat conduction on fracture behavior, focusing on the mechanism of thermally induced fracture slip. The simulation results showed that the developed numerical model reasonably reproduced the thermal expansion and thermal stress increment, the fracture stress and displacement and the effect of boundary condition. We expect the numerical model to be enhanced by continuing collaboration and interaction with other research teams of DECOVALEX-2023 Task G and validated in further study experiments.

Evaluation Study of Blast Resistance and Structural Factors in the Explosive Simple Storage by Numerical Analysis (수치해석을 통한 화약류 간이저장소의 방폭성 및 구조인자 평가연구)

  • Jung, Seung-Won;Kim, Jung-Gyu;Kim, Jun-Ha;Kim, Nam-Soo;Kim, Jong-Gwan
    • Tunnel and Underground Space
    • /
    • v.32 no.2
    • /
    • pp.160-172
    • /
    • 2022
  • The design regulations for simple explosive storage in Korea only stipulate standards for the materials and thickness of the wall of the structure because the amount of explosives that can be stored is small. There is concern about secondary damage during an internal explosion in a simple storage facility, and it is necessary to reexamine the current standards. The numerical analysis for the TNT 15 kg explosion inside the simple storage was carried out by setting the factors using the robust experimental design method. The displacement of the structure generated under the same time condition was analyzed, and the contribution was evaluated. The contribution of concrete thickness was the highest, and the contribution of concrete strength and rebar arrangement was lower than that of concrete thickness. The reinforcement diameter contributed extremely little to the displacement. The structural standards of the simple storage that are currently applied are insufficient on blast resistance, and it is necessary to present new design standards. Therefore, the design factor to be applied later analysis and actual experiments were taken into consideration. For the design variables, the thickness of the concrete was 15 cm considering the displacement, the concrete strength was selected as general concrete considering the inlet discharge pressure, the factor with the lowest average displacement was selected for the reinforcement arrangement and the diameter of the reinforcement, the factor with the smallest level was selected in consideration of economic feasibility because the difference in displacement was low.

Design Considerations for Buffer Materials and Research Status of Enhanced Buffer Materials (완충재 설계시 고려사항 및 고기능 완충재 연구 현황)

  • Lee, Gi-Jun;Yoon, Seok;Kim, Taehyun;Kim, Jin-Seop
    • Tunnel and Underground Space
    • /
    • v.32 no.1
    • /
    • pp.59-77
    • /
    • 2022
  • Currently, the design reference temperature of the buffer material for disposing of high-level radioactive waste is less than 100℃, so if the heat dissipation capacity of the buffer material is improved, the spacings of the disposal tunnel and the deposition hole in the repository can be reduced. First of all, this study tries to analyze the criteria for thermal-hydraulic-mechanical performance of the buffer materials and to investigate the researches regarding the enhanced buffer materials with improved thermal conductivity. First, the thermal conductivity should be as high as possible and is affected by dry density, water content, temperature, mineral composition, and bentonite type. the organic content of the buffer material can have a significant effect on the corrosion performance of a canister, so the organic content should be low. In addition, hydraulic conductivity of the buffer material should be less than that of near-field rock and swelling pressure should be appropriate for buffer materials to function properly. For the development of enhanced buffer materials, additives such as sand, graphite, and graphite oxide are typically used, and a thermal conductivity can be greatly improved with a very small amount of graphite addition compared to sand.