• Title/Summary/Keyword: 지하처분연구시설

Search Result 119, Processing Time 0.023 seconds

KAERI Underground Research Tunnel (KURT) (한국원자력연구원 지하처분연구시설)

  • Cho, Won-Jin;Kwon, Sang-Ki;Park, Jeong-Hwa;Choi, Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.3
    • /
    • pp.239-255
    • /
    • 2007
  • An underground research tunnel is essential to validate the integrity of a high-level waste disposal system, and the safety of geological disposal. In this study, KAERI underground research tunnel(KURT) was constructed in the site of Korea Atomic Energy Research Institute(KAERI). The results of the site investigation and the design of underground tunnel were presented. The procedure for the construction permits and the construction of KURT were described briefly. The in-situ experiments being carried out at KURT were also introduced.

  • PDF

Basic Design of the Underground Tunnel for the Research on High-level Waste Disposal (고준위폐기물 처분연구용 지하터널의 기본설계)

  • Cho Won-Jin;Kwon Sang-Ki;Park Jung-Hwa;Hahn Pil-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.4
    • /
    • pp.279-292
    • /
    • 2004
  • The underground research tunnel is essential to validate the integrity of a reference high-level waste disposal system, and the safety of geological disposal. In this study, a basic design of an underground research tunnel (URT) was tried to be developed. The candidate site for URT was described briefly, and it was intended to suggest the basic concept of the underground research tunnel. In order to develop the design of URT based on the basic concept, design requirements were established. Based on the basic concept and the design requirements, the basic design of URT was performed. Research items to be studied in the URT were also derived in this study.

  • PDF

Basic Design of the Underground Research Tunnel for HLW disposal Research (고준위폐기물 처분연구를 위한 지하연구시설에 대한 기본설계)

  • 권상기;박정화;조원진;한필수
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.199-207
    • /
    • 2004
  • In order to develop a safe geological disposal concept for the HLW from the nuclear power plants in Korea, it is necessary to evaluate the safety of the disposal concept in an underground research tunnel in the same geological formation as the host rock mass. The design concept of a research tunnel depends on the actual disposal concept, repository geometry, experiments to be carried at the tunnel, and geological conditions. In this study, geological investigation had been carried out to develop the basic design of the small scale underground disposal research tunnel in KAERI.

  • PDF

State report of radioactive wastes disposal in Japan (일본의 방사성 폐기물 처분관련 현황)

  • Kim, Hyeong-Mok;Gwon, Sang-Gi;Jo, Won-Jin
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2006.03a
    • /
    • pp.205-213
    • /
    • 2006
  • 본고에서는 해외사례의 조사/분석을 통해 국내 환경에 적합한 처분시스템을 개발하는데 효율적으로 이용할 목적으로 일본의 방사성 폐기물 처분과 관련한 주요기관의 사업내용을 정리하고 암석역학 전공자가 관심을 가져볼 만한 처분 관련 연구시설 및 연구내용을 소개한다. 저준위 폐기물을 대상으로 한 100m 심도의 롯까쇼무라 시험공동과 고준위 폐기물을 대상으로 결정암질에 건설되는 1000m 심도의 미즈나미 지하연구시설 및 퇴적암질에서의 500m 심도의 호로노베 지하연구시설을 소개하였다.

  • PDF

Rock Mechanics Studies at the KAERI Underground Research Tunnel for High-Level Radioactive Waste Disposal (고준위폐기물 처분연구를 위한 지하처분연구시설에서의 암석역학 관련 연구)

  • Kwon, S.;Cho, W.J.
    • Tunnel and Underground Space
    • /
    • v.17 no.1 s.66
    • /
    • pp.43-55
    • /
    • 2007
  • An underground research tunnel, KURT, was constructed at Korea Atomic Energy Research Institute, for various in situ validation experiments related to the development of a high-level radioactive waste disposal system. KURT, which has length of 255 m (access tunnel 180 m and research modules 75 m) and size of $6m{\times}6m$ was excavated in a cryatalline rock mass. In the KURT project, different rock mechanics studies had been carried out during the concept design, site characterization, detailed design, and construction stages. From the geophysical survey, borehole investigation, and rock property tests in laboratory and in situ, the rock and rock mass properties required for the mechanicsl stability analysis of KURT could be achieved and used for the input parameters of computer simulations. In this paper, important results from the rock mechanics studies at KURT and the three-dimensional mechanical stability analysis will be introduced.

Current Status and Tasks of Contaminant Migration Experiment Using Underground Research Laboratory (지하연구시설을 이용한 오염물질 이동실험 현황 및 과제)

  • Park, Chung-Kyun;Baik, Min-Hoon;Choi, Jong-Won
    • Tunnel and Underground Space
    • /
    • v.17 no.1 s.66
    • /
    • pp.17-25
    • /
    • 2007
  • Research and development for disposal of contaminants including radioactive wastes in deep underground have been carried out from laboratory works. However, validation and reliability of the data from the laboratory are arguing issues because they are not obtained from real disposal situations. Underground research laboratory (URL) is not only a solution to overcome such limitations, but also a valuable facility for performance assessment as an engineering scale. However, it requires much budget, and environmental issues can give rise to social conflicts easily. Such considering points related to URL are discussed as well as current status of worldwide URLs are introduced. Furthermore study plans for solute transport in a small-scale underground research tunnel (KURT), which was authorized recently as an non-radioactive facility in Korea, also described.

Rock mechanics studies at the KAERI Underground Research Tunnel (원자력연구소 지하처분연구시설(KURT)에서의 암석역학 관련 연구)

  • Gwon, Sang-Gi;Jo, Won-Jin
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2006.09a
    • /
    • pp.122-134
    • /
    • 2006
  • 현재 한국원자력연구소에서는 고준위폐기물 처분시스템의 다양한 현장 실증연구를 위해 원자력연구소내 지하처분연구시설(KAERI Underground Research Tunnel, KURT)가 건설되었다. 터널 크기 $6m{\times}6m$, 총길이 255m(진입터널 180m, 연구모듈 75m) 인 KURT는 결정질 화강암반에 위치하고 있다. KURT 에서는 개념설계, 부지조사, 시설설계, 건설 과정에서 다양한 암석 역학 관련 연구들이 수행되었다. 물리탐사, 시추공조사, 암석물성시험, 현장 물성 시험 등을 통해 KURT 의 구조적 안정성 평가에 필요한 암석 및 암반의 물성이 얻어졌으며 이들 물성은 해석 모델의 입력자료로 활용되었다. 본 연구에서는 KURT 에서 수행되었던 암석역학 관련 시험과 주요들을 소개하고 시험을 통해 얻어진 주요 결과와 이를 활용한 3차원 구조해석에 대해 논의하고자 한다.

  • PDF

Concept design and site characterization for the Underground Disposal Research Tunnel at KAERI site (원자력연구소내 지하 처분연구 시설 건설을 위한 지반조사 및 개념설계)

  • 권상기;박정화;조원진
    • Tunnel and Underground Space
    • /
    • v.14 no.3
    • /
    • pp.175-187
    • /
    • 2004
  • 고준위방사성폐기물 처분의 경우 심부 암반에 만들어진 처분장에 영구 처분하는 것이 최선의 방안으로 여겨지고 있다. 하지만 지하 심부의 암반에 대한 물리적, 화학적, 역학적, 열적, 수리적 물성과 이들과 핵종 이동의 관계, 처분환경에서의 공학적 방벽 및 암반의 거동이 처분장 안정성 및 안전성에 미치는 영향 등을 파악해야하는 어려움이 따른다. 특히 고준위폐기물 처분의 경우 장기간의 안전성을 고려해야하기 때문에 자연방벽과 공학적 방벽의 시간에 따른 거동변화도 고려하여야 할 필요가 있다. (중략)

Hydrogeological Properties of Geological Elements in Geological Model around KURT (KURT 지역에서 지질모델 요소에 대한 수리지질특성)

  • Park, Kyung Woo;Kim, Kyung Su;Koh, Yong Kwon;Choi, Jong Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.3
    • /
    • pp.199-208
    • /
    • 2012
  • To develop site characterization technologies for a radioactive waste disposal research in KAERI, the geological and hydrogeological investigations have been carried out since 1997. In 2006, the KURT (KAERI Underground Research Tunnel) was constructed to study a solute migration, a microbiology and an engineered barrier system as well as deeply to understand geological environments in in-situ condition. This study is performed as one of the site characterization works around KURT. Several investigations such as a lineament analysis, a borehole/tunnel survey, a geophyscial survey and logging in borehole, were used to construct the geological model. As a result, the geological model is constructed, which includes the lithological model and geo-structural model in this study. Moreover, from the results of the in-situ hydraulic tests, the hydrogeological properties of elements in geological model were evaluated.