• Title/Summary/Keyword: 지하수 관정

Search Result 263, Processing Time 0.019 seconds

Interaction Between Groundwater and Stream Water Induced by the Artificial Weir on the Streambed (하상 인공구조물에 의해 유도되는 지하수-하천수 시스템의 상호작용)

  • Oh, Jun-Ho;Kim, Tae-Hee;Sung, Hyun-Cheong;Kim, Yong-Je;Song, Moo-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.2
    • /
    • pp.9-19
    • /
    • 2007
  • This study investigated the interaction between groundwater and stream water systems, which is caused by the artificial weir on streambed, enforcing external stresses on the groundwater system. The study area is in Nami Natural Recreation Woods located in Chungcheongnam-do Geumsan-gun Nami-myeon Geoncheon-ri. In this study both of hydrophysical methods (hydraulic head) and hyrdochemical investigations (pH, EC, major ion analysis) were applied. In order to identify the relationship between each of study results, cross-correlation analysis is performed. From results of hydrophysical methods, water level fluctuation at BH-14, installed by the weir, shows the double-recession pattern much more frequently and much higher amplitudes than the fluctuation at each of other monitoring wells. Using the results by hydrochemical investigations, hydrochemical properties at BH-14 is similar to the hydrochemical characteristics in stream water. To analyze the interrelationships between the results from each of applied methods, cross-correlation analysis was applied. Results from the correlation analyses, water levels at BH-14 and stream weir showed the highest cross-correlation in hydrophysical aspects. On the other hand, the correlation between stream weir and bridge was the highest in hydrochemical aspects. The difference between the results from each of methods is due that the hydrophysical response at BH-14, such as water level, is induced by the pressure propagation-not with mass transfer, but the hydrochemical interaction, caused by mass transport, takes much more times. In conclusion impermeable artificial weir on streambed changes the interfacial condition between the stream and surrounding aquifers. The induced water flux into the groundwater system during flood period make water level at BH-14 increase instantly and groundwater quality higly similar to the quality of stream water. Referred similarities in both of water level and water quality at BH-14 become much higher when water level at weir grow higher.

The Hydrochemical and Stable Isotope Characteristics of Shallow Groundwater Near the Gwangju Stream (광주천 인근 천부 지하수의 수리화학 및 안정동위원소 특성)

  • Yoon, Wook;Ji, Se-Jung;So, Chil-Sub
    • Economic and Environmental Geology
    • /
    • v.36 no.6
    • /
    • pp.441-455
    • /
    • 2003
  • The most common water types are found to be Ca-$HCO_3$, Ca-Na-$HCO_3$ and Ca-Na-$HCO_3$-Cl in Gwangju groundwater. Groundwater near the Gwangju stream are characterized Ca-Cl water type, with over 50 mg/L of C1- and 400 ${\mu}$S/cm of EC. The systematic variation of $Cl^-$, $HCO_3^-$,- EC and ${\gamma}^{18}O$ values in groundwater with distance away from drainages is caused by streamwater infiltration. Stable isotope data indicate that ${\gamma}$D and ${\gamma}^{18}O$ values of groundwaters near drainages were enriched by evaporation effect, showing a equation of ${\gamma}$D=7. 1${\times}{\gamma}^{18}O$-1. ${\gamma}^{18}O$ values over -6${\textperthansand}$ are anomalous in the unconfined groundwater zones, which are influenced by the local surface water enriched in $^{18}O$ composition. Groundwater in highland shows remarkably light ${\gamma}^{18}O$ values below -8$\textperthousand$. The infiltration of streamwater is dominant in unconfined alluvium aquifer near drainages. ${\gamma}^{13}$CDIC values (-17.6∼-15.2$\textperthousand$) of groundwaters near drainages revealed that dissolved inorganic carbon (DIC) is predominantly originated from natural soil-derived $CO_2$. ${\gamma}^{15}N$ and ${\gamma}^{18}O$ values of nitrate are 0∼17.0${\textperthansand}$ and 6.6∼17.4${\textperthansand}$, respectively. Relationship between ${\gamma}^{15}N$ and ${\gamma}^{18}O$ shows a systematic isotopic fractionation caused by denitrification of 40∼60%, suggesting that the major source of groundwater nitrate originated from nitrate of soils, and mixing nitrate of soil and sewage or manure.

Application of the Artificial Recharge to Reduce the Ground-water Drawdown of the Riverbank Filtration (강변여과 취수시 과도한 지하수 하강을 저감시키기 위한 인공함양의 활용방안 연구)

  • Lee Dong-Kee;Park Jae-Hyeoun;Park Chang-Kun;Yang Jung-Suk;Nam Do-Hyun;Kim Dae-kun;Jeong Gyo-cheol;Choi Yong-sun;Boo Sung-an
    • The Journal of Engineering Geology
    • /
    • v.14 no.4 s.41
    • /
    • pp.391-400
    • /
    • 2004
  • Excess pumping on the river bank filtration well causes the over drawdown in the protected area of bank, which may make many problems such as soil water contents, Pumping head in the irrigated land, and it needs more irrigation and development of the deeper irrigating well. In this study the installation of the artificial recharging well was suggested to reduce the excess draw down in the protected land. Artificial recharging wells were applied at the bank filtration site of Changwon city by using Visual-MODFLDW. The optimized conditions are calculated that the recharging well is located about loom apart from the pumping well, and the recharging rate is $5\%$ of the pumping yield.

Evaluation of Pumping Rates for Multiple-Well Systems (군정 시스템의 취수량 평가)

  • Park, Nam-Sik;Kim, Sung-Yun;Kim, Boo-Gil;Kim, Il-Ryong
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.439-446
    • /
    • 2008
  • We have developed a method to evaluate pumping rates from a system of pumping-well family. For a given system actual pumping rates depend on pump characteristics and the sum of the static head and the dynamic head. The static head is the elevation difference between the natural groundwater level and the outlet of the pipeline that connects all the wells. Major components of the dynamic head are groundwater drawdown in the well and pipeline head loss. The dynamic head and the pump characteristics depend on the pumping rates. Actual pumping rates are determined at the intersections of the system total-head curves and the pump characteristic curves. The Newton-Raphson's method is used to solve the nonlinear simultaneous equations. The method is applied to a hypothetical well family. Impacts of various design and operational parameters on the pumping rates are analyzed.

Characteristics of Seepage Water and Groundwater in a Coastal LPG Storage Cavern of Jeonnam (전남 해안 LPG 저장공동 유출수와 주변 지하수의 수질특성)

  • Lee, Jin-Yong;Choi, Mi-Jung;Kim, Hyun-Jung;Cho, Byung-Wook
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.4
    • /
    • pp.33-44
    • /
    • 2009
  • Water curtain of an underground LPG storage cavern is a facility to prevent leakage of high pressure gases, for which groundwater should flow freely towards the cavern and groundwater level also must be stably maintained. In this study, in order to evaluate qualities of seepage water and surrounding groundwater of an underground LPG storage cavern in Yeosu, 4 rounds of samplings, field measurements and laboratory analyses (February, May, August, October of 2007) were conducted. According to field measurements, pH was weak acidic to neutral but it gradually increased with time. Electrical conductivity (EC) of groundwater near a salt stack showed very high values between 10.47 and 38.50 mS/cm. Dissolved oxygen (DO) showed a very wide range of 0.20~8.74 mg/L and a mean of oxidation-reduction potential (ORP) was 159 mV, which indicated an oxidized condition. Levels of $Fe^{2+}$ and $Mn^{2+}$ were mostly less than 3 mg/L. All of seepage waters showed a Na-Cl type while only groundwater near the salt stack showed a Na-Cl type with a high total dissolved solid. The other groundwaters exhibited typical $Ca-HCO_3$ types. Levels of aerobic bacteria were mostly very high (573-39,520 CFU/mL). Based on the analyses of these hydrochemistry and biological characteristics, it is concluded that there are no particular problems in groundwater and seepage water, which not causing a trouble in the cavern operation. However, both for control of bio-clogging and for sustainable operation of the water curtain system, a regular hydrochemical and microbiological monitoring is required for the seepage water and surrounding groundwater.

Genetic Prokaryotic Diversity in Boring Slime from the Development of a Groundwater Heat Pump System (지하수 히트펌프 시스템의 지중 환경관리를 위한 시추 슬라임의 원핵생물 유전자 다양성)

  • Kim, Heejung;Lee, Siwon;Park, Junghee;Joun, Won-Tak;Kim, Jaeyeon;Kim, Honghyun;Lee, Kang-Kun
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.4
    • /
    • pp.550-556
    • /
    • 2016
  • Groundwater heat pump (GWHP) systems must consider phenomena such as clogging to improve system efficiency and maintenance. In this study, we evaluated the prokaryotic diversity in a boring slime sample obtained at a depth of 10 m, which represented an undisturbed sample not affected by aquifer drawdown. Bacteria belonging to the phyla Proteobacteria (20.8%), Acidobacteria (18.8%), Chloroflexi (16.9%), and Firmicutes (10.2%) were found. Additionally, 144 species were identified as belonging to the genus Koribacter. Archaeal phyla were detected including Thaumarchaeota (42.8%), Crenarchaeota (36.9%), and Euryarchaeota (17.4%) and the class level comprised the miscellaneous Crenarchaeota group (MCG), Finnish forest soil type B (FFSB), and Thermoplasmata, which collectively accounted for approximately 69.4% of the detected Archaea. Operational taxonomic units (OTUs) were analyzed to reveal 3,565 bacterial and 836 archaeal OTUs, with abundances of 7.81 and 6.68, and richnesses of 5.96E-4 and 2.86E-3, respectively. The distribution of the groundwater microbial community in the study area showed a higher proportion of non-classified or unidentified groups compared to typical communities in surface water and air. In addition, 135 (approx. 1.9%) reads were assigned to a bacterial candidate associated with clogging.

Geological Structures and Their Relation to Groundwater System around K-1 Oil Stockpile (K-1 기지 주변 지질 구조와 지하수위 변동 특성)

  • Moon, Sang-Ho;Kim, Young-Seog;Ha, Kyoo-Chul;Won, Chong-Ho;Lee, Jin-Yong
    • Economic and Environmental Geology
    • /
    • v.43 no.2
    • /
    • pp.149-162
    • /
    • 2010
  • The most serious problem in oil stockpiles with artificial underground cavern is maintaining the stability of ground water system. In order to understand the ground water system around K-1 site, we determined the regional flow direction and level distribution of groundwater, and investigated the major geologic factors influencing their flow system. Reactivated surface along the contact between granite and gneiss, and fractures and faults along the long acidic dyke may contribute as important pathways for groundwater flow. Within K-1 site, groundwater level fluctuation is closely related to the rainfall events and injection from surface or influx water. In this project, the effect of groundwater pumping from the southern wells was examined. Based on equations relating water level drawdown to pumping rate at those wells, their pumped outflow of groundwater ranged from $80\;m^3$/day to less than $250\;m^3$/day. The modeling results with MODFLOW imply that the previous groundwater pumping at distance of 1.2 km may not affect the groundwater level variations of the K-1 site. However, continuous pumping work at quantity over $250\;m^3$/day in this area will be able to affect the groundwater system of the K-1 site, particularly along the acidic dyke.

Aquifer Transmissivity Estimation with Kriging Techniques and Numerical Model in the LAN (Kriging기법과 수치모형에 의한 이안지구 대수층의 투수량계수 추정)

  • 조웅현;박영기;김환홍
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.1 no.2
    • /
    • pp.113-120
    • /
    • 1994
  • One of the delicate problems in aquifer management is the identification of the spatial distribution of tile hydrological parameters. The observed data are insufficient to identify the distribution of transmissivities in LAN aquifer. To determine the distribution of the transmissivity in LAN aquifer, it would be required to transform the observed heads at the pilot points into transmissivities. Therefore, three procedures wire tackled for the identification of the spatial distribution of the hydrological parameters; geostatistical estimate of the parameter field on the basis of known well point, heads reconstructed by a numerical model, and modification of the values at pilot points by a minimization algorithm. The variogram of Kriging has been applied to a total of 258 transmissivity value in attempt to quantify their distribution of LAN aquifer. Variogram of the observed and optimized transmissivities at pilot points are adapted to the exponential form. So, it is fitted by theoretical one with coefficients of w=0.623, a=2.743. Values of head obtained through numerical analysis are adjusted to the observed values so that heads have been transformed completely into the transmissivities at the observation wells. The procedure represented contour map of the estimated transmissivities and the calculated head.

  • PDF

Application of kriging approach for estimation of water table elevation (Kriging 기법을 이용한 지하수위 분포 추정)

  • Park, Jun-Kyung;Park, Young-Jin;Wye, Yong-Gon;Lee, Sang-Ho;Hong, Chang-Soo;Choo, Suk-Yeon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.3
    • /
    • pp.217-227
    • /
    • 2002
  • Geostatistical methods were used for the groundwater flow analysis on the ${\bigcirc}{\bigcirc}$ tunnel area. Linear regression analysis shows that the topographic elevation and ground water level of this area have very high correlation. Groundwater-level contour maps produced by ordinary kriging and cokriging have little differences in mountain areas. But, comparing two maps on the basis of an elevation contour map, a groundwater-level contour map using cokring is more accurate. Analyzing the groundwater flow on two groundwater-level contour maps, the groundwater of study area flows from the north-west mountain areas to near valleys, and from the peak of the mountain to outside areas. In the design steps, the groundwater-level distribution is reasonably considered in the tunnel construction area by cokriging approach. And, geostatistics will provide quantitative information in the unknown groundwatrer-level area.

  • PDF

The Abnormal Groundwater Changes as Potential Precursors of 2016 ML5.8 Gyeongju Earthquake in Korea (지하수위 이상 변동에 나타난 2016 ML5.8 경주 지진의 전조 가능성)

  • Lee, Hyun A;Hamm, Se-Yeong;Woo, Nam C.
    • Economic and Environmental Geology
    • /
    • v.51 no.4
    • /
    • pp.393-400
    • /
    • 2018
  • Despite some skeptical views on the possibility of earthquake prediction, observation and evaluation of precursory changes have been continued throughout the world. In Korea, the public concern on the earthquake prediction has been increased after 2016 $M_L5.8$ and 2017 $M_L5.4$ earthquakes occurred in Gyeongju and Pohang, the southeastern part in Korea, respectively. In this study, the abnormal increase of groundwater level was observed before the 2016 $M_L5.8$ Gyeongju earthquake in a borehole located in 52 km away from the epicenter. The well was installed in the Yangsan fault zone, and equipped for the earthquake surveillance. The abnormal change in the well would seem to be a precursor, considering the hydrogeological condition and the observations from previous studies. It is necessary to set up a specialized council to support and evaluate the earthquake prediction and related researches for the preparation of future earthquake hazards.