• Title/Summary/Keyword: 지하수압

Search Result 222, Processing Time 0.021 seconds

The Analysis of Single Piles in Weathered Soil with and without Ground Water Table under the Dynamic Condition (지진 시 풍화지반(건조/포화)에 근입된 단말뚝의 동적거동 분석)

  • Song, Su-Min;Park, Jong-Jeon;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.1
    • /
    • pp.17-33
    • /
    • 2022
  • This study describes the effect of ground water table on the dynamic analysis of single piles subjected to earthquake loading. The dynamic numerical analysis was performed for different dry and saturated soils with varying the relative densities of surrounding weathered soils (SM). The test soil was a weathered soil encountered in the engineering field and bender element tests were conducted to estimate the dynamic properties of test soil. The Mohr-Coulomb model and Finn model were used for soil, dry and saturated conditions, respectively. These models validated with results of centrifuge tests. When compared with the results from the soil conditions, saturated cases showed more lateral displacement and bending moment of piles than dry cases, and this difference caused from the generation of excess porewater pressure. It means that the kinematic effect of the soil decreased as the excess pore water pressure was generated, and it was changed to the inertial behavior of the pile.

Numerical Analysis of Groundwater Flow through Fractured Rock Mass by Tunneling in a Mountainous Area (산악 지역 내 터널 굴착 시 단열 암반 내 지하수 유동 분석)

  • Kim, Hyoung-Soo;Lee, Ju-Hyun;Ahn, Ju-Hee;Ahn, Gyu-Cheon;Yoon, Woon-Sang
    • Tunnel and Underground Space
    • /
    • v.16 no.4 s.63
    • /
    • pp.281-287
    • /
    • 2006
  • Intake of groundwater by tunneling in a mountainous area mostly results from groundwater flow through fractured parts of total rock mass. For reasonable analysis of this phenomenon the representative joint groups 1, 2, and 3 have been selected by previous investigations, geological/geophysical field tests and boring works. Three dimensional fractures were generated by the FracMan and MAFIC which is a three dimensional finite element model has been used to analyse a groundwater flow through fractured media. Monte Carlo simulation was applied to reduce the uncertainty of this study. The numerical results showed that the average and deviation of amounts of groundwater intaked into tunnel per unit length were $5.40{\times}10^{-1}$ and $3.04{\times}10^{-1}m^3/min/km$. It is concluded that tunnel would be stable on impact of groundwater environment by tunneling because of the lower value than $2.00{\sim}3.00m^3/min/km$ as previous and present standard on the application of tunnel construction.

Estimation of the amount of refrigerant in artificial ground freezing for subsea tunnel (해저터널 인공 동결공법에서의 냉매 사용량 산정)

  • Son, Youngjin;Choi, Hangseok;Ko, Tae Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.255-268
    • /
    • 2018
  • Subsea tunnel can be highly vulnerable to seawater intrusion due to unexpected high-water pressure during construction. An artificial ground freezing (AGF) will be a promising alternative to conventional reinforcement or water-tightening technology under high-water pressure conditions. In this study, the freezing energy and required time was calculated by the theoretical model of the heat flow to estimate the total amount of refrigerant required for the artificial ground freezing. A lab-scale freezing chamber was devised to investigate changes in the thermal and mechanical properties of sandy soil corresponding to the variation of the salinity and water pressure. The freezing time was measured with different conditions during the chamber freezing tests. Its validity was evaluated by comparing the results between the freezing chamber experiment and the numerical analysis. In particular, the freezing time showed no significant difference between the theoretical model and the numerical analysis. The amount of refrigerant for artificial ground freezing was estimated from the numerical analysis and the freezing efficiency obtained from the chamber test. In addition, the energy ratio for maintaining frozen status was calculated by the proposed formula. It is believed that the energy ratio for freezing will depend on the depth of rock cover in the subsea tunnels and the water temperature on the sea floor.

The response of a single pile to open face tunnelling (Open face 터널시공으로 인한 단독말뚝의 거동)

  • Lee, Cheol-Ju
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.5
    • /
    • pp.529-545
    • /
    • 2012
  • Three-dimensional (3D) finite element analyses have been performed to study the behaviour of a single pile to open face tunnelling in stiff clay. Several key factors such as tunnelling-induced ground and pile settlement, and shear transfer mechanism have been studied in detail. Tunnelling resulted in the development of pile settlement larger than the Greenfield soil surface settlement. In addition, due to changes in the shear transfer between the pile and the soil next to the pile with tunnel advancement, axial force distributions along the pile change drastically. The apparent allowable pile capacity was reduced up to about 30% due to the development of tunnelling-induced pile head settlement. The skin friction on the pile was increased with tunnel advancement associated with the changes of soil stresses and ground deformation and hence axial pile force distribution was reduced. Maximum tunnelling-induced tensile force on the pile was about 21% of the designed pile capacity. The zone of influence on the pile behaviour in the longitudinal direction may be identified as ${\pm}1$-2D (D: tunnel diameter) from the pile centre (behind and ahead of the pile axis in the longitudinal direction) based on the analysis conditions assumed in the current study. Negative excess pore pressure was mobilised near the pile tip, while positive excess pore pressure was computed at the upper part of the pile. It has been found that the serviceability of a pile experiencing adjacent tunnelling is more affected by pile settlement than axial pile force changes.

Study on the effect of tail void grouting on the short- and long-term surface settlement in the shield TBM Tunneling using numerical analysis (쉴드TBM터널에서 뒤채움 주입이 지반의 단기·장기 침하에 미치는 영향에 대한 수치해석적 연구)

  • Oh, Ju-Young;Park, Hyunku;Kim, Dohyoung;Chang, Seokbue;Lee, Seungbok;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.265-281
    • /
    • 2017
  • For shallow tunnel constructions, settlement of the ground surface is a main issue. Recent technical developments in shield TBM tunneling technique have enabled a decrease in such settlements based on tunneling with ground deformation controls. For this objective, the tail void grouting is a common practice. Generally surface settlements in a soil of low permeability occur during a tunnel construction but also during a long period after completion of the tunnel. The long-term settlements occur mainly due to consolidation around the tunnel. The consolidation process is caused and determined by the tail void grouting which leads to an excess pore water pressure in the vicinity of the tunnel. Because of this, the grouting pressure has a strong effect on the long-term settlements in the shield tunneling. In order to investigate this effect, a series of coupled hydro-mechanical 3D finite element simulations have been performed. The results show that an increase in grouting pressure reduces the short-term settlements, but in many cases, it doesn't lead to a reduction of the final settlements after the completion of consolidation. Thereby, the existence of a critical grouting pressure is identified, at which the minimal settlements are expected.

Characteristics of the Regional Rock Stress Field at Shallow Depth in the Kyungsang Basin with In-situ Rock Stress Measurement (현장 측정을 통한 경상분지의 천부 초기응력장 특성에 관한 연구)

  • Bae, Seong-Ho;Jeon, Seok-Won;Kim, Jae-Min;Kim, Jang-Soon
    • Tunnel and Underground Space
    • /
    • v.18 no.2
    • /
    • pp.149-161
    • /
    • 2008
  • It is nearly impossible to estimate the exact state of the current rock stress of interest site by the theoretical and physical approaches except some specific geological situations. This means that in-situ stress measurement is a unique way to obtain reliable information on rock stress especially for civil and mining engineering related problems. Since late in the 90's, in-situ rock stress tests have been widely conducted to provide the quantitative information on the stress state of engineering site at the design stage of an underground rock structure in the Kyungsang Basin, Korea. The study area is the near surface regions at the depth less than 300 m in the Kyungsang Basin. It includes Yeosoo to the west and Busan to the east. Totally, 270 in-situ stress measurements were conducted in the surface test boreholes at the depth from 14 m to 300 m by hydraulic fracturing method. In this paper, based on the measurement data set, the overall characteristics of the current in-situ rock stress fields in the study area are briefly described. And also the investigation results on the difference between the stress distributions for the granitoid and the andesitic rock region are also introduced. Finally, the distributions of the regional horizontal stress directions in Busan and the Yangsan faults area are shown.

Effects of Temperature and Water Pressure on the Material Properties of Granite & Limestone from Gagok Mine (온도와 수압이 가곡광산 화강암과 석회암의 물성에 미치는 영향)

  • Yoon, Yong-Kyun;Baek, Young-Jun;Jo, Young-Do
    • Tunnel and Underground Space
    • /
    • v.21 no.1
    • /
    • pp.33-40
    • /
    • 2011
  • This study focuses on having a temperature and water pressure effects on the change of material properties of rocks. Granite and limestone specimens from Gagok Mine were thermally treated with predetermined temperatures of 200, 300, 400, 500, 600 and $700^{\circ}C$ (excepting $700^{\circ}C$ for limestone) to estimate the reduction of material properties of rocks caused by heat. Specific gravity, effective porosity, elastic wave velocity, uniaxial compressive strength, Young's modulus and Poisson's ratio for pre-heated specimens were measured. With increasing temperature, material properties of both rock specimens change sequentially. Significant changes of specific gravity, effective porosity and elastic wave porosity occur above $400^{\circ}C$ for granite and $300^{\circ}C$ for limestone. Changes of uniaxial compressive strength, Young's modulus and Poisson's ratio seem to be similar to those of physical properties. GSI of 500, 600 and $700^{\circ}C$ specimens inferred by using uniaxial compressive strength and Young's modulus of preheated granite specimens is found to be 81, 66 and 58 each. In case of pre-heated limestone specimens of 400, 500 and $600^{\circ}C$, the corresponding GSI is 76, 71 and 65 each. 500, 600 and $700^{\circ}C$ granite specimens and 400, 500 and $600^{\circ}C$ limestone specimens were pressurized to 7.5 MPa and their effective porosity, elastic wave velocity, uniaxial compressive strength and Young's modulus were measured. The average value of material properties (mentioned above) of 500, 600 and $700^{\circ}C$ granite specimens under water pressure compared with material properties of non-pressurized pre-heated specimens exhibits the reduction of 7.6, 11.3 and 14.9%, respectively. In case of 400, 500 and $600^{\circ}C$ limestone specimens under water pressure, the average value of material properties decreases by 8.2, 13.8 and 21.9%, respectively.

A numerical comparison study on the estimation of relaxed rock mass height around subsea tunnels with the existing suggested methods (해저터널의 이완하중고 산정을 위한 제안식들과의 수치해석적 비교 연구)

  • You, Kwang-Ho;Lee, Dong-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.1
    • /
    • pp.25-36
    • /
    • 2008
  • When constructing subsea underground structures, the influence of high water and seepage pressure acting on the structures can not be neglected. Thus hydro-mechanical coupled analysis should be performed to estimate the behavior of the structures precisely In practice, relaxed rock load is generally used for the design of tunnel concrete lining. A method based on the distribution of local safety factor around a tunnel was proposed for the estimation of a height of relaxed rock mass ($H_{relaxed}$). In this study, the validation of the suggested method is investigated in the framework of hydro-mechanical coupled analyses. It was suggested that inducing inflow by pumping through a drainage well gave more reliable results than inducing inflow with shotcrete hydraulic characteristics in case of rock condition of Class III. In this study, therefore, inducing inflow by pumping through a drainage well are adopted in estimating $H_{relaxed}$ due to a tunnel excavation with the rock condition of Class I, III, and V. Also the estimated $H_{relaxed}$ results are compared with those of the existing suggested methods. As the result of this study, it is confirmed that estimating $H_{relaxed}$ based on the distribution of local safety factor around a tunnel can be effectively used even for the case of hydro-mechanical coupled analysis. It is also found that inducing inflow pumping through a drainage well gives more precise and consistent Hrelaxed of a subsea structure.

  • PDF

A Numerical Analysis of Porewater Pressure Predictions on Hillside Slopes (수치해석을 이용한 산사면에서의 간극수압 예측에 관한 연구)

  • 이인모;서정복
    • Geotechnical Engineering
    • /
    • v.10 no.1
    • /
    • pp.47-62
    • /
    • 1994
  • It has been well known that the rainfall-triggered rise of groundwater levels is one of the most important factors resulting the instability of the hillside slopes. Thus, the prediction of porewater pressure is an essential step in the evaluation of landslide hazard. This study involves the development and verification of numerical groundwater flow model for the prediction of groundwater flow fluctuations accounting for both of unsatu나toed flow and saturated flow on steep hillside slopes. The first part of this study is to develop a nomerical groundwater flow model. The numerical technique chosen for this study is the finitro element method in combination with the finite difference method. The finite element method is used to transform the space derivatives and the finite difference method is used to discretize the time domain. The second part of this study is to estimate the unknown model parameters used in the proposed numerical model. There were three parameters to be estimated from input -output record $K_e$, $\psi_e$, b. The Maximum -A-Posteriori(MAP) optimization method is utilized for this purpose, . The developed model is applied to a site in Korea where two debris avalanches of large scale and many landslides of small scale were occurred. The results of example analysis show that the numerical groundwater flow model has a capacity of predicting the fluctuation of groundwater levels due to rainfall reasonably well.

  • PDF

Design Standard and Improvement Proposal of Slope (국내외 비탈면 설계기준 및 개선방안(설계안전율 중심으로))

  • Yu, Byeong-Ok;Song, Pyeong-Hyeon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.296-296
    • /
    • 2008
  • 국내 절토비탈면은 이상 기후 및 건설공사의 증대로 인해 증가하고 있는 추세이며 장마철 및 태풍으로 인해 비탈면의 붕괴로 많은 인명 및 재산피해가 발생되고 있는 실정이다. 국내에서 사용되고 있는 기존의 비탈면의 설계기준은 암반의 불연속면에 대한 조사를 실시하고는 있지만 주로 암반의 굴착난이도를 토층, 리핑암, 발파암으로 구분하여 각각의 비탈면 절취경사를 결정하여 사용하는 방법을 사용하였으며 이러한 기준은 단순히 암석의 강도를 기준으로 설정되어 있으므로 암석의 공학적 특성 즉, 암반내 불연속면 방향성, 연속성, 충진물질, 마찰각, 풍화속도 등의 영향으로 공용후 비탈면 구배의 재조정 및 보강이 빈번하다. 국내외 절토비탈면의 설계기준은 각 기관별로 산재되어 있었으며 비탈면에 대한 설계 및 시공 등에 관한 기준은 도로와 철도 설계기준에 일부 반영되어 있을 뿐 항만, 댐, 택지조성 등 기타 시설 설계기준에는 비탈면에 대한 기준이 마련되어 있지 않아 표준적인 비탈면 설계기준 및 유지관리지침이 등이 필요하였다. 이러한 문제점을 보완하기 위해 2004년부터 2006까지 한국시설안전공단, 한국도로공사, 대한주택공사가 협동으로 연구한 건설공사 비탈면 설계 시공 및 유지관리에 관한 연구의 결과로 2006년도에 "건설공사 비탈면 설계기준"이 수립되었다. 이 설계기준은 건설공사에서의 기존 상이한 기준들을 정리하고 동일화하는 작업을 수행하였으며 지반의 조사에서부터 대책공까지를 막나하여 정리하였다. 그러나 최근에 급격한 기후변화로 인한 비탈면붕괴 빈번함에 따라 과거 적용되어 왔던 이들 기준을 적용하는 경우, 특히 상부 토층 및 풍화암 구간에서 많은 설계안전율을 만족하지 못해 많은 보강을 수반해야 하는 문제가 발생되고 있어 그 원인에 대한 분석을 수행하고자 하였다. 2006년도 정리된 기준은 과거에 적용하여 온 유기시의 안전율 조건을 Fs > 1.1~1.2을 적용하였던 것을 Fs > 1.2로 통일하였으며 지하수위 조건은 지표면에 위치하도록 하였다. 지하수위 조건은 풍화암 및 토층의 경우, 과거 지표면에 -3m를 적용한 시기가 있었으나 지표면에 지하수위를 적용하는 것이 일반적인 해석방법이다. 이러한 결과의 원인을 검토해 보면 다음과 같다. 첫째, 풍화암 및 토층에 적용되어 온 지반강도 정수가 과거 적용한 값보다 최근에는 작아지는 경향을 보이고 있다. 둘째, 지하수위 적용문제로 현재 지표면에 지하수위를 두어 안전율을 감소시키는 문제로 이는 최근 들어 많은 연구기관에서 강우시 간극수압의 증가에 대한 연구가 활발하게 진행되고 있다. 그러나 침투수 해석은 현행 기준에도 강우의 침투를 고려한 해석을 실시하는 경우 FS > 1.3 적용하는 것으로 되어 있으나 대부분의 해석에서는 적용이 되지 못하고 있는 실정이다. 셋째, 안전율이 과거에 주로 적용된 Fs > 1.1에서 Fs > 1.2로 상향 조정되어 우기시의 설계안전율 만족시키지 못하는 문제이다. 그러므로 이러한 문제점을 개선하기 위한 검토가 필요하며 장기적으로 이에 대한 합리적인 기준을 개정하는 작업이 추후에 수행되어야 할 것으로 판단된다.

  • PDF