• Title/Summary/Keyword: 지표 변위

Search Result 192, Processing Time 0.027 seconds

영상레이더에 의해 관측된 부산시 사상구 지역의 지반침하

  • 김상완;홍상훈;정한철;이창욱;원중선
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.284-287
    • /
    • 2003
  • 영상레이더 SAR (Synthetic Aperture Radar)를 이용한 레이더 interferometry (InSAR) 기술은 지난 1990년대 동안 지표의 고도 정보 추출 및 지진, 화산, 빙하, 지반침하 등에 의한 표면산란체의 미세한 변위와 대기층과 관련된 연구 등 많은 분야에 응용되어 왔다[1][2][3]. 지반침하는 세계 여러 곳에서 발생하고 있으며, 대표적인 침하의 원인으로는 지진 및 화산, 지하 시설물의 건설, 폐광산의 공동, 그리고 지하수 유출 등이 있다. (중략)

  • PDF

Displacement Measuring System for the Slope Stability Analysis Using the Softcopy Photogrammetry (사면안정해석을 위한 사진측량을 이용한 사면변위계측시스템)

  • 한중근;송영석
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.23-32
    • /
    • 2003
  • The displacement measuring systems of slope ground surface are very expensive instruments and have disadvantages concerning installing, maintaining and surveying. The measuring works are very dangerous. Recently, simple systems are required to measure the displacement of slope ground surface in stages of cutting and maintaining slope. In this study, the mechanism of Softcopy Photogrammetry is applied to measure the displacement of slope ground surface. Three dimensional data of the slope ground surface can effectively be obtained in order to analyze slope stability. Computer Program, DIMA (Design IMmage Analysis), including the reformation process of a contour line was developed. As a result of this study, countermeasure and instruction standards of the displacement of slope ground surface before and after slope failure are established. Also, disadvantages of the existing system can be complemented.

Vibration Displacements Measurement of Slope Models using Close Range Photogrammetry (근거리 사진측량을 이용한 사면모형 진동 변위 측정)

  • Jung, Sung-Heuk;Lee, Jae-Young;Choi, Suk-Keun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.6
    • /
    • pp.561-568
    • /
    • 2011
  • The purpose of this study is to measure displacements that occurs on a surface and interior of slope model and the shape when the slope is destroyed at vibration experiment of the slope model using close range photogrammetry. The circle targets and sphere targets are installed on a chamber and a slope model, while the earthquake wave are applied in regular time interval. The close range photogrammetric images are acquired in each displacements step until the slope model is destroyed. Those photos are processed by image processing method and the center points of targets are automatically extracted. Furthermore, the three-dimensional coordinates of targets are calculated by image orientation and bundle adjustment processing. As a result, amount of displacement at each level is precisely measured and provided the basic information for assessing the slope stability using three-dimensional measurement of the target movement and slope destruction.

A Study on Lateral Displacement of Caisson Constructed on Improved Ground (개량 지반에 설치된 케이슨의 측방변위에 대한 연구)

  • Kim, Myunghak;Lee, Sangwook;Yoon, Minseung;Han, Byungwon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.4
    • /
    • pp.33-41
    • /
    • 2011
  • In case of building up port facilities on soft ground, unsymmetrical surcharge of embankment, which make the excess pore water pressure to increase, causes to occur lateral displacement due to plasticity of soil. A study on lateral displacement and settlement of the caisson, which is installed on improved ground, was accomplished. The field measurement data and calculated values obtained from FEM program of Plaxis were compared and analyzed. For numerical analysis, the properties of soils, constructions stage and time were considered. Lateral displacement was measured at the point of inclinometers installed in front of caisson. Settlement was measured at the center of extra embankment behind of caisson. Comparison of measured and calculated for lateral displacement showed that the calculated value was greater than the measured, and increasing trend was different. The calculated value showed step increasing as step extra embankment applied, whereas the measured gradually was increased. For settlement of embankment, the amount of both measured and calculated were similar, but the trend was different like that of lateral movement.

Effect of Tunneling and Groundwater Interaction on Tunnel Behavior (터널시공과 지하수의 상호작용이 터널의 거동에 미치는 영향)

  • Yoo, Chung-sik;Kim, Sun-bin;Bae, gyu-jin;Shin, hyu-sung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.2
    • /
    • pp.97-108
    • /
    • 2005
  • This paper presents the effect of tunneling and groundwater interaction on tunnel behavior. As part of this study, design issuses for tunneling situations similar to that considered in this study are first identified. A parametric study is then conducted on tunneling situations frequently encountered in Seoul area using a 3D stress-pore presure coupled finite-element model with emphasis on the effects of ground and lining permeabilities. The results indicate that tunneling in water bearing ground results in a deeper and wider settlement trough, increased axial thrusts in shotcrete lining than those without the groundwater. Also revealed is that the axial thrusts in shotcrete lining are governed by the relative permeability between the ground and the lining. Design implications of the findings from this study are discussed.

  • PDF

Experimental study on the ground movement due to consecutive construction of retaining wall and underground space in cohesionless soil (사질토 지반에서 흙막이벽체-지하공간 연속 굴착에 따른 지반거동에 대한 실험적 연구)

  • Park, Jong-Deok;Yu, Jeong-Seon;Kim, Do-Youp;Lee, Seok-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.267-281
    • /
    • 2015
  • The ground movement and changes in earth pressure due to the consecutive construction of retaining wall and underground space were studied experimentally. A soil tank having 160 cm in length and 120 cm in height, was manufactured to simulate the vertical excavation like retaining wall by using 10 separated right side walls and underground space excavation like tunnel by using 5 separated bottom walls. The variation of earth pressure and surface settlement were measured according to the excavation stages. The results showed that the decrease of earth pressure due to the wall movement can cause the increase of earth pressure of the neighboring walls proving the arching effect. Experiments simulating continuous construction sequence also identified arching effect, however only 50% of earth pressure was restored on the 10th right side wall due to the movement of 1st bottom side wall unusually.

Embedment Effect of Foundation on the Response of Base-Isolated NPP Structure (기초의 묻힘이 면진 원전구조물의 지진응답에 미치는 효과)

  • Lee, Eun-Haeng;Kim, Jae-Min;Lee, Sang-Hoon;Kim, Jae-Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.5
    • /
    • pp.377-388
    • /
    • 2016
  • This study is aimed to evaluate the embedment effect of foundation as compared to the surface foundation on the response of a base-isolated nuclear power plant structure. For this purpose, the boundary reaction method (BRM), which is a two-step frequency domain and time domain technique, is used for the nonlinear SSI analysis considering nonlinear behavior of base isolators. The numerical model of the BRM is verified by comparing the numerical results obtained by the BRM and the conventional frequency-domain SSI analysis for an equivalent linear SSI system. Finally, the displacement response of the base isolation and the horizontal response of the structure obtained by the nonlinear SSI analysis using the moat foundation model are compared with those using the surface foundation model. The comparison showed that the displacement response of the base isolation can be reduced by considering the embedment effect of foundation.

Analysis on the Characteristics of the Landslide in Maeri (III) - With a Special Reference on Slope Stability Analysis - (매리 땅밀림형 산사태(山沙汰)의 발생특성(發生特性)에 관한 분석(分析) (III) - 사면(斜面)의 안정해석(安定解析)을 중심(中心)으로 -)

  • Park, Jae-Hyeon;Choi, Kyung;Bae, Jong Soon;Ma, Ho-Seop;Lee, Jong-Hak;Youn, Ho-Jung
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.6
    • /
    • pp.377-386
    • /
    • 2005
  • This study was carried out to analyse the landslide characteristics by ground investigation, borehole image processing system, field seismic test, laboratory test and ground stability analysis at the landsliding area occurred in Maeri, Sangdong-myeon, Gimhaesi, Gyeongsangnam-do. Region I needs to install data logger system to monitor a land displacement during the heavy rainfall events because the region can be liable to occur the land slide by land creeping. It is needed to restore rapidly, if the land displacement occurs in Region I. Region II needs to monitor and repair because of the possibility of slope failure by long-term soil loss. Region III needs constructions to remove ground runoff and ground water to be infiltrated from talus. Region IV where is a stable region, needs to be protected from land cutting or other man-made damage.

Surface deformation monitoring of Augustine volcano, Alaska using GPS measurement - A case study of the 2006 eruption - (GPS를 이용한 미국 알래스카 어거스틴 화산의 지표변위 감시 - 2006년 분화를 중심으로 -)

  • Kim, Su-Kyung;Hwang, Eui-Hong;Kim, Young-Hwa;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.5
    • /
    • pp.545-554
    • /
    • 2013
  • Augustine is an active stratovolcano located in southwest of Cook Inlet, about 290 kilometers southwest of Anchorage, Alaska. Between January 11 and 28, 2006, the volcano erupted explosively 14 times. We collected twelve permanent GPS stations operating by Plate Boundary Observatory (PBO) from 2005 to 2011. All data processing was carried out using Bernese GPS Software V5.0 with IGS precise orbit. Static baseline processing by fixing AC59 station was applied for the volcano activity monitoring. AC59 is the nearest (about 24.5 km) station to Augustine volcano, and located on North America Plate including Augustine Island. The test results show inflation (9.7 cm/yr) and deflation (-9.2 cm/yr) of volcano before and after eruption around crater clearly. After volcano activity has reached a plateau, some of the GPS stations installed north of the volcano show ground subsidence phenomenon caused by compaction of pyroclastic flows. These results indicate the possibility of using surface deformation observed by GPS for monitoring and prediction of volcano activity.