• Title/Summary/Keyword: 지표 변위

Search Result 194, Processing Time 0.025 seconds

Tension Wire Sensor of shallow failure detection for the real time slop stabilization (지표변위 감지 센서를 활용한 사면 안전감지 시스템)

  • Chang, Ki-Tae
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.3
    • /
    • pp.137-143
    • /
    • 2005
  • Early detection of premonitory symptom of slope movement ensures tremendous saving of lives and repair costs from catastrophic disaster. Therefore, it is essential to constantly monitor the performance and integrity of both reinforced and un-reinforced cut slopes. We developed a novel monitoring system by using tension wire sensors. It's advantages are highly sensitivity, simple installation, large displacement measurement, durability of system, capability of remote sensing. Real-time measurement of slope surface movement is shown graphically and it gives a warning when the monitored value exceeds a given threshold level so that any sign of abnormal slope movement can be easily perceived.

  • PDF

Prediction of Deep-Excavation induced Ground surface movements using Artifical Neural Network (인공신경망기법을 이용한 깊은 굴착에 따른 지표변위 예측)

  • 유충식;최병석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.451-458
    • /
    • 2002
  • This paper presents the prediction of deep excavation-induced ground surface movements using artificial neural network, which is of prime importance in the perspective of damage assessment of adjacent buildings. A finite element model, which can realistically replicate deep-excavation-induced ground movements was employed and validated against available large-scale model test results. The validated model was then used to perform a parametric study on deep excavations with emphasis on ground movements. Using the result of the finite element analysis, Artificial Neural Network(ANN) system is formed, which can be used in the prediction of deep exacavation-induced ground surface displacements. The developed ANN system can be effecting used for a first-order prediction of ground movements associated with deep-excavation.

  • PDF

The Effect of Obesity Levels on Irradiated Small Bowel volume in Belly Board with Small Bowel Displacement Device for Rectal Cancer Radiotherapy (복부판과 소장변위도구를 사용하는 직장암의 방사선치료 시 비만도가 소장의 조사용적에 미치는 영향)

  • Kim, Se-Young;Kim, Joo-Ho;Park, Hyo-Kuk;Cho, Jeong-Hee
    • Journal of radiological science and technology
    • /
    • v.36 no.1
    • /
    • pp.39-47
    • /
    • 2013
  • For radiotherapy in rectal cancer patients treated with small bowel displacement device (SBDD) and belly board, We will suggest new indication of using SBDD depending on obesity index by analyzing correlation between obesity and irradiated small bowel volume. In this study, We reviewed 29 rectal cancer patients who received pelvic radiation therapy with belly board and SBDD from January to April in 2012. We only analyzed those patients treated with three-field technique (PA and both LAT) on 45 Gy (1.8 Gy/fx). We measured patients' height, weight, body mass index (BMI), waist-hip ratio (WHR) and divided BMI into two groups.(${\geq}23$:BMI=group1, <23:BMI=group2) We performed a statistical analysis to evaluate correlation between total volume of bladder($TV_{bladder}$), obesity index and high dose volume of small bowel (small bowel volume irradiated at 90% of prescribed dose, $HDV_{sb}$), low dose volume of small bowel (small bowel volume irradiated at 33% of prescribed dose, $LDV_{sb}$). The result shows, gender, WHR and status of pre operative or post operative do not greatly affect $HDV_{sb}$ and $LDV_{sb}$. Statistical result shows, there are significant correlation between $HDV_{sb}$ and BMI (p<0.04), $HDV_{sb}$ and $TV_{bladder}$ (p<0.01), $LDV_{sb}$ and $TV_{bladder}$ (p<0.01). BMI seems to correlate with $HDV_{sb}$ but does not with $LDV_{sb}$ (p>0.05). There are negative correlation between $HDV_{sb}$ and BMI, $TV_{bladder}$ and $HDV_{sb}$, $TV_{bladder}$ and $LDV_{sb}$. Especially, BMI group1 has more effective and negative correlation with $HDV_{sb}$ (p=0.027) than in BMI group2. In the case of BMI group 1, $TV_{bladder}$ has significant negative correlation with $HDV_{sb}$ and $LDV_{sb}$ (p<0.04). In conclusions, we confirmed that Using SBDD with belly board in BMI group1 could more effectively reduce irradiated small bowel volume in radiation therapy for rectal cancer. Therefore, We suggest using belly board with SBDD in order to reduce the small bowel toxicity in rectal radiotherapy, if patients' BMI is above 23.

Study on Analysis for the Slope Monitoring Performance at the Whangryeong Mountain Site (황령산 사면 계측관리 분석에 관한 연구)

  • La Won Jin;Choi Jung Chan;Kim Kyung Soo;Cho Yong Chan
    • The Journal of Engineering Geology
    • /
    • v.14 no.4 s.41
    • /
    • pp.429-442
    • /
    • 2004
  • Landslide of the Whanpyeong Mountain which was occurred at Busan Metropolitan City in 1999 belongs to the category of plane failure. Automatic monitoring system to measure horizontal displacement, pore pressure change and load change has operating from reconstruction stage for evaluating rock slope stability (August, 2000$\~$Feburuary, 2002). As a result of the analysis on the monitoring performance data, it is suggested that infiltrated rain water from pound surface discharges rapidly through cut-slope because pressure head of water decreases rapidly after rainfall while rise of pore pressure is proportional to the amount of rain water. As a result of data analyses for inclinometers and load cells, it seems that slope is stablized be cause ground deformation is rarely detected. The areas especially similar to the study site where landslide is induced by heavy rain fall, change of pore pressure is rapidly analyzed using automatic monitoring system. Therefore, it is considered that automatic monitoring system is very effect for slope stability analysis on important cut-slopes.

Seismic Performance Evaluation of Nonseismic Neighborhood Living Facilities Considering Deterioration (비내진 근린생활시설의 노후도를 고려한 내진성능평가)

  • Lee, Young Cheon;Jeoung, Chae Myeoung;Lee, Eun Jin;Kim, Myung Hoon;Choi, Ki Bong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.1
    • /
    • pp.55-63
    • /
    • 2013
  • In this study, seismic performance was evaluated considering the deterioration level for the low-rise and moderate buildings with non-seismic details which are most common in Korea. Evaluation results showed that the deterioration condition is relatively good even after 24 years of construction but the seismic performance did not satisfy the protection index in the first and second evaluation. In case of the third evaluation, the goal performance was satisfied based on the interstory drift ratio but reinforcement is found to be necessary. Seismic performance was evaluated after the target buildings were reinforced in the walls, bracing, and damper. Results showed the interstory drift ratio drastically reduced regardless of reinforcement methods and satisfied the level of immediate occupancy. In case of wall reinforcement, however, base shear increased more than double which requires review on the existing foundation.

A Study on the Ground Settlement and Reinforcement Measures in the Case of Tunnelling at the Yangsan Fault (양산단층대 터널시공에서 침하량 및 보강대책에 대한 연구)

  • Jung, Hyuksang;Kim, Hyeyang;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.6
    • /
    • pp.35-48
    • /
    • 2009
  • An excessive ground displacement occurs with excavating tunnel in a fault zone because the fault has properties of soft ground in generally. It may have had a bad influence to adjacent structure. So, rapid reduction of ground strength by groundwater inflow should be prevented. It must be established for an impervious and reinforcing effect of ground to ensure a tunnel stability. The ground settlement and reinforcing effects were estimated by numerical analyses on tunnel through 570 m sector in Yangsan fault zone of Keongbu high-speed railway. Settlements evaluated by numerical analysis is similar to those calculated by using equation of Loganathan & Poulo. It was shown that reliable estimate of ground settlement by applying a prediction equation is possible. Applicability of adopted tunnel reinforcement method in fault zone was investigated by results of pilot construction and numerical analysis. Results from this study indicate that the adopted reinforcement method make tunnel displacements and member stresses restrain in design criteria.

  • PDF

Deformation Based Seismic Design of Asymmetric Wall Structures (변형에 기초한 비대칭 벽식 주초의 내진설계)

  • 홍성걸;조봉호
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.43-53
    • /
    • 2002
  • Current torsional provisions focus n restricting torsional effect of asymmetric wall structures by proportioning strength of wall based on the traditional assumption that stiffness and strength are independent. Recent studies have pointed out that stiffness of structural wall is dependent on the strength. This implies that actual stiffness of walls can be determined only after torsional design is finished and current torsional provisions may result in significant errors. To overcome this shortcoming, this paper proposes deformation based torsional design for asymmetric wall structures. Contrary to the current torsional provisions, deformation-based torsional design uses displacement and rotation angle as design parameters and calculates base shear for inelastic torsional response directly. Main purpose of deformation based torsional design is not to restrict torsional response but to ensure intended torsional mechanism according to the capacity design concept. Because displacement and rotation angle can be used as performance criteria indicating performance level of asymmetric structures, this method can be applied to the performance based seismic design effectively.

Prediction of Deformation Behavior of a Shallow NATM Tunnel by Strain Softening Analysis (연화모델을 이용한 저토피 NATM 터널의 변형거동의 예측)

  • Lee, Jae-Ho;Shinich, Akutagawa;Kim, Young-Su
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.9
    • /
    • pp.17-28
    • /
    • 2007
  • Urban tunnels are usually important in terms of prediction and control of surface settlement, gradient and ground displacement. This paper has studied the application of strain softening analysis to predict deformation behavior of an urban NATM tunnel. The applied strain softening model considered the reduction of shear stiffness and strength parameter after yielding with strain softening effects of a given material. Measurements of surface subsidence and ground displacement were adopted to monitor the ground behavior resulting from the tunneling and to modify tunnel design. The numerical analysis results produced a strain distribution, deformational mechanism and surface settlement profile, which are in good agreement with the results of case study. The approach of strain softening modeling is expected to be a good prediction method on the ground displacement associated with NATM tunneling at shallow depth and soft ground.

Behavior of braced wall due to distance between tunnel and wall in excavation of braced wall nearby tunnel (터널에 인접한 흙막이굴착 시 터널 이격거리에 따른 거동특성)

  • Ahn, Sung Joo;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.4
    • /
    • pp.657-669
    • /
    • 2018
  • In recent years, the development of complex urban areas has become saturated and much attention has been focused on the development of underground space, and deep excavation is frequently performed in order to increase the utilization of underground space due to the enlargement of buildings and the high rise of buildings. Therefore, in this study, we tried to understand the behavior of the braced wall and the behavior of the tunnel adjacent to the wall according to the stiffness of the wall and the distance between the tunnel and wall. As a result of the study, the deformation of the braced wall tended to decrease with increasing the stiffness of the wall, and the axial force acting on the struts was also different according to the stiffness of braced wall. When the stiffness of the braced wall is small (2 mm), the point at which the axial force of the braces maximizes is near 0.3H of the wall. When the stiffness of the braced wall is large (5 mm), the axial force is maximum at around 0.7H of the wall. Also, the tunnel convergence occurred more clearly when the separation distance from the braced wall was closer, the stiffness of the wall was smaller, and the tunnel convergence was concentrated to the lower right part. The ground settlement due to the excavation of the ground tended to decrease as the distance between tunnel and braced wall was closer to that of the tunnel, which is considered to be influenced by the stiffness of the tunnel.

Experimental Study on the Ground Behavior around a Tunnel due to the Sidewall Deformation of Shallow Tunnel in Longitudinal Direction Excavated under the Slope (사면 하부지반에 종단 방향으로 굴착한 얕은 터널에서 측벽변형에 따른 터널 주변지반의 거동에 대한 실험적 연구)

  • Na, Yong Soo;Lee, Sang Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.5
    • /
    • pp.21-30
    • /
    • 2019
  • While the study of the shallow tunnel has been mainly on the longitudinal load transfer and horizontal surface conditions, the study of the ground behavior of shallow tunnel under the slope is not sufficient. Therefore, in this study on the ground behavior around a tunnel due to the sidewall deformation of shallow tunnel under the slope that is excavated in longitudinal direction, a scale-down model test has been performed. The model tunnel has the dimension of 320 mm wide, 210 mm high and 55 mm long with enough material strength in aluminum and the model ground has the uniform ground conditions by 3 types of carbon rods. The model test has been performed with the variables of slopes and the cover depths by controlling the tunnel sidewall deformation, and the change of sidewall-load, load transfer, ground subsidence was monitored and analyzed. According to the increase of the slope, the maximum ground subsidence increased by 20~39% compared to the horizontal surface. The load ratio increased by maximum 20% in the tunnel crown and decreased in sidewall according to the surface slope. The load transfer shows maximum 128% of increase at the cover depth of 1.0D, while at the 1.5D cover depth it shows non-critical difference from horizontal surface. The slope has major effects on load transfer at the cover depth of 1.0D.