• Title/Summary/Keyword: 지질학

Search Result 300, Processing Time 0.029 seconds

An Analytical Study of Geologic Characteristics and Production- Related Problems of Beep Natural Gas Resources (심부 천연가스의 지질학절 부존 환경 특성과 생산관련 현안 문제점 분석 연구)

  • Chang Seungyong
    • 한국석유지질학회:학술대회논문집
    • /
    • autumn
    • /
    • pp.28-46
    • /
    • 2001
  • Natural gas is a mixture of hydrocarbon gases and impurities such as nitrogen, hydrogen sulfide, and carbon dioxide and a clean energy producing no pollution materials for combustion. Currently, the demand of the natural gas is rapidly increasing due to worldwide environmental problems. According to Hubbert's study in the past, the natural gas was predicted as rapidly depleted resources, and then the results led to high gas price and limitation of usage during 1980s. Afterward, the study of natural gas resources based on geology identified the additional natural gas resources that were not considered in Hubbert's study. They are unconventional gas, additional resources in the existed reservoirs, and natural gas in deep subsurface areas. Such additional resouces made the future of natural gas bright and pormised low and stable gas price in the future. Deep natural gas is defined as the gas existing at or below 15,000ft$(4,752{\cal}m)$ in depth from the surface. According to the study from the U.S. Geological Survey(USGS) in 1995, 1,412 TCF of technically recoverable natural gas was remained to be discovered or developed in the onshore of United States. A significant part of that resource base, 114 TCF, exists at deep sedimentary basins, and it shows wide distribution with various geological environments. In 1995, the deep gas contributed to $6.7\% of total supply amount of natural gas in the United States and is expected to be $18.7\% by 201.5. However, the development of the deep gas is a high risky business due to expensive investment and high portion of dry holes, although it is developed. Thus, for developing the deep gas economically, it is necessary to overcome many technical challenges. In this paper, for increasing success rate of the deep gas, 1) geologic and compositional characteristics, and production cost have been analyzed according to depth, 2) technical problems related to deep gas production have been summarized, and 3) finally future study areas for increasing application of the deep gas have been suggested. For reference, this paper was written based on the study results from USGS and Gas Research Institute(GRI), for the United States is doing the most active R&D in the deep gas area, and thus, has many reliable data.

  • PDF

Muti-variable Sequence Stratigraphic Model and its Application to Shelf-Slope System of the Southwestern Ulleung Basin Margin (다중변수 순차층서 모델 개발을 통한 울릉분지 남서부 대륙주변부의 층서연구)

  • Yoon Seok Hoon;Park Se Jin;Chough Sung Kwun
    • The Korean Journal of Petroleum Geology
    • /
    • v.5 no.1_2 s.6
    • /
    • pp.36-47
    • /
    • 1997
  • This study presents multi-variable sequence model for a broader application of sequence concept proposed by Exxon group. The concept of the multi-variable model is based on the fact that internal organization and boundary type of the sequences are determined by three varying factors including 3rd-order cycles of eustasy, and tectonic movement and sediment influx with 2nd-order changes. Instead of Exxon group's systems tracts, this model adopts parasequence sets as the fundamental building blocks of the sequence, because they are descriptive stratigraphic units simply defined by internal stacking pattern, reflecting interactions of accommodation and sediment influx. Seven sequence types which vary in number and type of internal parasequence sets are formulated as associations of four types of accommodation development and three grades of sediment influx. In the southwestern margin of Ulleung Basin, the multi-variable sequence analysis of shelf-slope sequence shows systematic changes in stratal patterns and the numbs, of constituent parasequence sets (i.e. sequence type). These changes are interpreted to reflect temporal and spatial changes in type and rate of tectonic movement and sediment influx, as a result of back-arc opening and closing. During the back-arc opening, rapid subsidence, continuous rise of relative sea level, and high sediment influx gave rise to sequences dominantly of single progradational parasequence set. In the early stage of back-arc closing accompanied by local contractional deformation, different types of sequences contemporaneously formed depending on the spatial changes in tectonically-controlled accommodation and influx rates. During the subsequent slow back-arc subsidence, rise-dominated relative sea-level cycle was coupled with moderate to high sedimentation rate to have resulted in sequences consisting of $2~3$ parasequence sets.

  • PDF

Petroleum Geochemistry of Organic Matter from the core samples in the Tertiary Pohang Basin (포항 분지 제3기층 시추코아 유기물의 석유 지화학적 특성)

  • Lee Youngjoo;Kwak Young Hoon;Yun Hye Su;Cheong Tae Jin;Oh Jae Ho;Kim Hagju;Kang Moohee
    • The Korean Journal of Petroleum Geology
    • /
    • v.5 no.1_2 s.6
    • /
    • pp.48-58
    • /
    • 1997
  • Core samples from the B, E, F, H wells in the Tertiary Pohang Basin were analysed for total organic carbon (TOC) content and subject to Rock-Eval pyrolysis in order to assess petroleum geochemical characteristics of organic matter. Following geochemical screening, we selected samples from each well for the study of bitumen and kerogens such as optical observation, infra-red spectroscopy and biomarker analyses. Sediments of the Tertiary Yonil Group contain total organic carbon ranging from $0.55{\%} to 3.74{\%}$ with S1+S2 values higher than 2mgHC/g Rock in B, E and F wells, which indicates fair hydrocarbon generation potential. Most organic matter in the B, E, F wells is compared to type II based on the Rock-Eval pyrolysis, infra-red spectroscopy and optical observation. However, organic matter in the H well is compared to type III because the well is located at the margin of the basin where the preservation of terrestrial material is dominant. Geochemical analyses show that organic matter in the Yonil Group is thermally immature although thermal maturity slightly increases with depth. Maturity levels of the extracted kerogens are similar to those of bulk samples ($Tmax<435^{\circ}C$. Petroleum geochemical charateristics of the sediments in the Tertairy Yonil Group is fair in terms of the organic richness and hydrocarbon genetic potential, but organic matter is thermally immature due to the shallow burial depth. Optical observation of the kerogens and biomarker analysis show that organic matter in the Yonil Group is both marine and terrestrial origin, although it was deposited in marine environment. Pristane/phytane ratio suggests rather anoxic depositional environment. Transitional characteristics of organic matter indicate that the marine Yonil Group was deposited near the terrestrial environments. Input of terrestrial organic matter is more prevalent in the samples recovered from the lowermost horizon in the wells due to the terrestrial environment at the time of basin formation.

  • PDF

Tectonic Structures and Hydrocarbon Potential in the Central Bransfield Basin, Antarctica (남극 브랜스필드 해협 중앙분지의 지체구조 및 석유부존 가능성)

  • Huh Sik;Kim Yeadong;Cheong Dae-Kyo;Jin Young Keun;Nam Sang Heon
    • The Korean Journal of Petroleum Geology
    • /
    • v.5 no.1_2 s.6
    • /
    • pp.9-15
    • /
    • 1997
  • The study area is located in the Central Bransfield Basin, Antarctica. To analyze the morphology of seafloor, structure of basement, and seismic stratigraphy of the sedimentary layers, we have acquired, processed, and interpreted the multi-channel seismic data. The northwest-southeastern back-arc extension dramatically changes seafloor morphology, volcanic and fault distribution, and basin structure along the spreading ridges. The northern continental shelf shows a narrow, steep topography. In contrast, the continental shelf or slope in the south, which is connected to the Antarctic Peninsula, has a gentle gradient. Volcanic activities resulted in the formation of large volcanos and basement highs near the spreading center, and small-scale volcanic diapirs on the shelf. A very long, continuous normal fault characterizes the northern shelf, whereas several basinward synthetic faults probably detach into the master fault in the south. Four transfer faults, the northwest-southeastern deep-parallel structures, controlled the complex distributions of the volcanos, normal faults, depocenters, and possibly hydrocarbon provinces in the study area. They have also deformed the basement structure and depositional pattern. Even though the Bransfield Basin was believed to be formed in the Late Cenozoic (about 4 Ma), the hydrocarbon potential may be very high due to thick sediment accumulation, high organic contents, high heat flow resulted from the active tectonics, and adequate traps.

  • PDF

Sedimentary History and Tectonics in the Southeastern Continental Shelf of Korea based on High Resolution Shallow Seismic Data. (고해상탄성파탐사자료에 의한 한국남동대륙붕의 퇴적사 및 조구조운동)

  • Min Geon Hong;Park Yong Ahn
    • The Korean Journal of Petroleum Geology
    • /
    • v.5 no.1_2 s.6
    • /
    • pp.1-8
    • /
    • 1997
  • Seismic stratigraphic analysis of the high resolution profiles obtained from the southeastern shelf of Korea divided the deposits into 4 sequences; 1) sequence D, 2) sequence C, 3) sequence B and 4) sequence A (Holocene sediments). Sequence D was deposited in shallow-water environment at west of the Yangsan Fault as the basin subsided. On the other hand, the eastern part was formed at the slope front. Landward part of the slope-front fill sediments were eroded and redeposited nearby slope due to the syndepositional tilting of the basin. This tilting probably resulted from the continuous closing of the Ulleung Basin. Sequence C is made of stacked successions of the lowstand fluvial sediments, transgressive sediments and marine highstand sediments derived from the paleo-river in the western part of the Yangsan Fault. Sequence C in the eastern part of the Yanshan Fault was formed at the shelf break. Progradation of the lowstand sediments resulted in broadening of the shelf. Sequence C in the eastern part was also tilted but the tilting was weaker than in Sequence D. During the formation of sequence B the tilting stopped and the point source instead of the line source started in both sides of the Yangsan Fault. Sequence B was composed of the highstand systems tract partially preserved around the Yokji island, lowstand systems tract mainly preserved in the Korea Trough and transgressive systems tract. After the stop of the tilting, the force of compression due to the closing of the Ulleung Basin may be released by the strike-slip faults instead of tilting.

  • PDF

Ecological Characteristics of Periphyton Community in a Small Mountain Stream (Buso) Inflowing Thermal Wastewater Effluent, Korea (온배수가 유입되는 계류 (부소천)에서 부착조류의 생태학적 특성)

  • Jeon, Gyeonghye;Kim, Nan-Young;Hwang, Soon-Jin;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.2
    • /
    • pp.216-237
    • /
    • 2017
  • Thermal effluent of the hot spring has long been a field of interest in the relationship between temperature gradient and freshwater algae in geology, limnology and aquatic ecology throughout the world. On the other hand, many artificial hot springs have been developed in Korea, but the research on them has not been still active. This study was performed every month from December 2015 to September 2016, to elucidate the spatiotemporal effects of thermal wastewater effluent (TWE) on the ecosystem of benthic algal assemblage in four stations(BSU (upstream), HSW (hot spring wastewater outlet), BSD1~2 (downstream)) of the upstream reach of the Buso Stream, a tributary located in the Hantan River basin. During the survey, the influencing distance of temperature on TWE was <1.0 km, and it was the main source of N P nutrients at the same time. The effects of TWE were dominant at low temperature and dry season (December~March), but it was weak at high temperature and wet season (July~September), reflecting some seasonal characteristics. Under these circumstances, the attached algal communities were identified to 59 genera and 143 species. Of these, the major phylum included 21 genera 83 species of diatoms(58.0%), 9 genera 21 species of blue-green algae (14.7%) and 25 genera 32 species of green algae (22.4%), respectively. The spatiotemporal distribution of them was closely related to water temperature ($5^{\circ}C$ and $15^{\circ}C$) and current ($0.2m\;s^{-1}$ and $0.8m\;s^{-1}$). In the basic environment maintaining a high water temperature throughout the year round, the flora favoring high affinity to $PO_4$ in the water body or preferring stream habitat of abundant $NO_3-PO_4$ was dominant. As a result, when compared with the outcomes of previous algal ecology studies conducted in Korea, the Buso Stream was evaluated as a serious polluted state due to persistent excess nutrient supply and high thermal pollution throughout the year round by TWE. It can be regarded as a dynamic ecosystem in which homogeneity (Summer~Autumn) and heterogeneity (Winter~Spring) are repeated between upstream and downstream.

The Quantitative Analysis of Articles in Journal of the Korean Earth Science Society during 1979-2014 (한국지구과학회지 논문(1979-2014)의 정량적 분석)

  • Cho, Young Sun;Kim, Jeong Yul
    • Journal of the Korean earth science society
    • /
    • v.35 no.7
    • /
    • pp.562-571
    • /
    • 2014
  • In the celebration of the $50^{th}$ anniversary of the Korean Earth Science Society, the whole articles published in Journal of the Korean Earth Science Society (JKESS) were quantitatively analyzed. JKESS has played a major role in exchanging academically among earth science education specialists and in educating next generation for the last 36 years since it was founded in 1979. The total number of 1544 articles in thirty five volumes about the earth sciences and the earth science pedagogy has been published by August, 2014, and the number of the yearly published articles has been increasing. Regarding the research area, 69.3% was published in earth sciences and the other 30.7% was in earth science education; the percentage of research articles in geology, atmospheric science, environmental science, oceanography, and astronomy was 55.2, 17.6, 16.0, 6.0, and 5.2%, respectively. The number of research articles on atmospheric science and environmental science has recently been increasing, whereas, earth science education research articles have been" decreasing, which was similar to the pattern seen fifteen years ago. We thought that one of the reasons was related to a new journal named, "Journal of the Korean Society of Earth Science Education" started to publish in December, 2008. The number of articles authored or co-authored with foreigner scholars was totaled 53, which is only 3.4% of the entire number of published articles. It suggests that international advertisement via public relations as well as the development of English homepage be necessary. In order to become an excellent registered academic journal, it is the time to comprehensively discuss how to improve both the quality growth and the quantity of JKESS. According to the Ministry of Education, it is now in its planning stage to convert the current registration system of the academic journals to the autonomous evaluation system in academia. Therefore, we recommend that Journal of the Korean Earth Science Society be prepared for the upcoming future change.

Development and Application of Learning on Geological Field Trip Utilizing on Social Construction of Scientific Model (과학적 모델의 사회적 구성을 활용한 야외지질학습 개발 및 적용)

  • Choi, Yoon-Sung;Kim, Chan-Jong;Choe, Seung-Urn
    • Journal of the Korean earth science society
    • /
    • v.39 no.2
    • /
    • pp.178-192
    • /
    • 2018
  • The purposes of this study were to develop and apply on learning on geological field trip utilizing the social construction of scientific model. We developed field trip places by considering not only Orion (1993)'s novelty space but also the achievement standards of 2015 national curriculum. The subjects of the study were 8 in the 'G' science gifted education center. We conducted a study using the theme of 'How was formed Mt. Gwanak?' on 5 lessons including a series of 2 field trip lessons and 3 lessons utilizing the social construction of scientific model. Students participated in pre- and post-test on the understanding of scientific knowledge about formation of mountain. Semi-structured interview was used to analyze students' learning about geological field trip in terms of affective domain. Results were as follows. First, there were 2 places of upper-stream valley and down-stream valley separately. They contained outcrops gneiss, granite, joint in the valley, xenolith, fault plane, mineral in the valley. Second, pre- and post-test and semi-structure interview were analyzed in terms of what scientific knowledge students learned about and how Mt. Gwanak was formed. Seven students explained that Mt. Gwanak was volcano during pretest. Seven students described how granite was formed to form Mt. Gwanak. They also understood geological time scale, i.e., metamorphic rock. Third, the geological field trip was effective to low achievement geoscience students as they engaged in the activities of field trip. Using positive responses on affective learning was effective on learning on geological field trip when utilizing the social construction of scientific model. This study suggests that teachers use an example 'model' on geoscience education. This study also suggests that teachers apply the social construction of scientific model to geological field trip.

백악기 미국 걸프만 퇴적층의 지구조적, 퇴적학적, 석유지질학적 고찰 (A Review of Tectonic, Sedinlentologic Framework and Petroleum Geology of the Cretaceous U. S. enlf Coast Sedimentary Sequence)

  • Cheong Dae-Kyo
    • The Korean Journal of Petroleum Geology
    • /
    • v.4 no.1_2 s.5
    • /
    • pp.27-39
    • /
    • 1996
  • In the Cretaceous, the Gulf Coast Basin evolved as a marginal sag basin. Thick clastic and carbonate sequences cover the disturbed and diapirically deformed salt layer. In the Cretaceous the salinities of the Gulf Coast Basin probably matched the Holocene Persian Gulf, as is evidenced by the widespread development of supratidal anhydrite. The major Lower Cretaceous reservoir formations are the Cotton Valley, Hosston, Travis Peak siliciclastics, and Sligo, Trinity (Pine Island, Pearsall, Glen Rose), Edwards, Georgetown/Buda carbonates. Source rocks are down-dip offshore marine shales and marls, and seals are either up-dip shales, dense limestones, or evaporites. During this period, the entire Gulf Basin was a shallow sea which to the end of Cretaceous had been rimmed to the southwest by shallow marine carbonates while fine-grained terrigengus clastics were deposited on the northern and western margins of the basin. The main Upper Cretaceous reservoir groups of the Gulf Coast, which were deposited in the period of a major sea level .rise with the resulting deep water conditions, are Woodbinefruscaloosa sands, Austin chalk and carbonates, Taylor and Navarro sandstones. Source rocks are down-dip offshore shales and seals are up-dip shales. Major trap types of the Lower and Upper Cretaceous include salt-related anticlines from low relief pillows to complex salt diapirs. Growth fault structures with rollover anticlines on downthrown fault blocks are significant Gulf Coast traps. Permeability barriers, up-dip pinch-out sand bodies, and unconformity truncations also play a key role in oil exploration from the Cretaceous Gulf Coast reservoirs. The sedimentary sequences of the major Cretaceous reseuoir rocks are a good match to the regressional phases on the global sea level cuwe, suggesting that the Cretaceous Gulf Coast sedimentary stratigraphy relatively well reflects a response to eustatic sea level change throughout its history. Thus, of the three main factors controlling sedimentation (tectonic subsidence, sediment input, and eustatic sea level change) in the Gulf Coast Basin, sea-level ranks first in the period.

  • PDF

Geochemical Characteristics of the Hydrocarbons from the Block 6-1, Ulleung Basin (울릉 분지 6-1 광구에서 발견된 탄화수소의 지화학적 특성)

  • Lee, Young-Joo;Cheong, Tae-Jin;Oh, Jae-Ho;Park, Se-Jin;Yi, Song-Suk
    • The Korean Journal of Petroleum Geology
    • /
    • v.11 no.1 s.12
    • /
    • pp.1-8
    • /
    • 2005
  • Seventeen exploratory wells have been drilled in the Block VI-1 of offshore Korea, which is located in the southern part or the Ulleung Basin. Gas show has been recognized from most of the wells, and gas and condensate have been accompanied in some wells. Commercial discovery of gas, accompanied by condensate, has been made from Gorae V well. The reservoir gases or the Dolgorae III, Gorae I, and Gorae V wells in the Ulleung Basin mainly consists of hydrocarbon gases (>93%). These gases are thermogenic wet gases which contain more than 96% of the methane and result from the cracking of petroleum or kerogen. Based on the chemistry and composition of the gases and stable isotope data, they seem to be generated from different source rocks. The condensates from the Gorae I and V wells are mostly generated from terrestrial organic matter. Lacustrine organic matter may not play an important role for the generation of these condensates. The condensates from the Gorae V wells consist predominantly of terrestrial organic matter but with minor subsidiary input from marine organic matter. The condensates from Gorse I and V wells may be generated from different source rocks. The thermal maturity level of the condensates from the Gorae V well ranges from early to middle oil generation zone and condensate from Gorae I reaches middle oil window. Correlation or the thermal maturation level of the condensates and organic matter in the sediments reveals that a depth of the generation of liquid hydrocarbons can be inferred to 3,000 m and 3,900 m for the Gorae V and I wells, respectively. Gorae V well, however, did not reach the target depth and the geochemical data of the Gorae I well were obscured due to the severe sediment caving in.

  • PDF