• Title/Summary/Keyword: 지질시대별

Search Result 22, Processing Time 0.027 seconds

Occurrence, physical and petrochemical properties of the marbles by geological ages in South Korea (국내 대리석류의 지질시대별 산출 및 물리화학적 특성)

  • 윤현수;박덕원;이병대;홍세선
    • The Journal of Engineering Geology
    • /
    • v.13 no.4
    • /
    • pp.429-444
    • /
    • 2003
  • Domestic marbles are mostly distributed in Gyeonggi and Yeongnam Massifs, southwest and northeast Ogcheon Belts, which belong to Precambrian, age-unknown, Cambrian-Ordovician ages, respectively. The former marbles occur as interbedded rocks in metasediments and xenoliths in granitic gneisses. Age-unknown ones occur as interbedded in the formations of Hyangsanri, Gyeomyeongsan, Hwajeonri and Munjuri, and some in metasedimentary rocks. The latter ones occur as interbedded in Pungchon Limestone, and in Jeongseon Limestone, Hwacheonri Formation and Great Limestone Group, respectively. Among physical properties, porosity shows irregular patterns to density and compressive strength, respectively. Absorption ratio has a linear pattern of positive trend to porosity, and compressive strength mostly shows a positive trend to tensile strength. Compressive strengths of the marbles are as follows : Precambrian $1,106{\;}kg/\textrm{cm}^2$, age-unknown $935{\;}kg/\textrm{cm}^2$. Cambrian $1,162{\;}kg/\textrm{cm}^2$ and Ordovician $1,560{\;}kg/\textrm{cm}^2$, respectively. Tensile strengths have decreasing trends as the above order of geologic age. In diagrams of major elements, $Al_2O_3,{\;}Fe_2O_{3(t)}{\;}and{\;}Na_2O+K_2O$ generally show positive trends with increasing $v_2$. MgO/CaO of Precambrian and age-unknown marbles have much higher values than Cambrian and Ordovician marbles as follows, Precambrian 0.31, age-unknown 0.30, Cambrian 0.03 and Ordovician 0.08. And MgO shows a negative trend with increasing CaO, which nay be caused by dolomitization. By MgO contents they can be classified into calcitic dolomite, dolomitic limestone, limestone and dolomitic limestone, respectively.

Relationship Analysis between Lithology, Geological time and Geothermal Gradient of South Korea (남한지역의 암상 및 지질시대별 지온경사율 관계 분석)

  • 김형찬;이사로;송무영
    • Economic and Environmental Geology
    • /
    • v.35 no.2
    • /
    • pp.163-170
    • /
    • 2002
  • The purpose of this study is to analyze the relationship between geology and geothermal gradient in South Korea using GIS. For the analysis, 352 temperature logging wells were constructed to spatial database and the relationships beween geothermal gradient and geological time and lithology were analyzed using the overlay the wells layer and 1:1,000,000 scale geological map layer. The average of the geothermal aradient of South Korea is 29.34$^{\circ}C$/km. In the geologic sequence, Cenozoic strata has 39.7$0^{\circ}C$/km, Mesozoic strata has 30.63$^{\circ}C$/km , Paleozoic strata has 22.32$^{\circ}C$/km, Proterozoic strata 23.15$^{\circ}C$/km geothermal gradient value. In the lithological aspect, plutonic rocks 33.96$^{\circ}C$/km, sedimentary rocks have 24.78$^{\circ}C$/km and sedimentary and volcanic rocks have 26.85$^{\circ}C$/km geotermal gradient value. The result can be used to develop geothermal energy and hot spring as a reference.

Regional Distribution Pattern and Geo-historical Transition of In-situ Stress Fields in the Korean Peninsula (한반도지역의 현지응력장 분포 패턴 및 지질시대별 전이 추이)

  • Synn, Joong-Ho;Park, Chan;Lee, Byung-Joo
    • Tunnel and Underground Space
    • /
    • v.23 no.6
    • /
    • pp.457-469
    • /
    • 2013
  • We have analyzed the regional in-situ stress pattern using 460 stress measurement data at about 100 test sites in Korea, and suggested correlation equations of stress-depth and stress ratio-depth. We made Korea Stress Map(KSM) as in-situ stress fields of the Korean peninsula, combining with a paleo-stress analysis according to the geological period and a stress estimation from focal mechanism. We confirmed the reliability and applicability of correlation equations derived in this study, comparing with worldwide stress-depth patterns, and also estimated the pattern of in-situ stress fields of north-eastern Asia including Korea, China and Japan, comparing with World Stress Map.

Distribution Characteristics of Geologic Age and Rock Type of Bedrocks at the National Wood Culture Heritage Site by GIS (GIS에 의한 국가지정 목조문화재 기반암류의 지질시대별 및 암층별 분포특성)

  • Yun, Hyun-Soo;Lee, Jin-Young;Kim, Yong-Won;Hong, Sei-Sun;Kim, Eun-Kyung
    • The Journal of the Petrological Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.347-364
    • /
    • 2015
  • The purpose of the work was carried out to contribute the factors related to geologic realm in the disaster stability evaluation items of the national wood culture heritages. Among the total heritages, the study targets mainly include 304 cases interpreted as a rock type in the geologic map of the bedrocks with GIS interpretation. The cases show the geologic ages, geologic provinces and rock types as the following distribution characteristics. In geologic ages, they are decreasing in the orders of Jurassic, Cretaceous, Quaternary, Precambrian, Age-unknown Cambro-Ordovician Carboniferous and Tertiary. Among the ages, the former fours occupy 285 cases (93.8%) of the targets, which show most of the wood culture heritages. In geologic provinces classified into 15, they are decreasing in the orders of Daebo intrusives, alluvium, Gyeongsang supergroup, Bulgugsa intrusives, Yeongnam massif, and Gyeonggi massif which occupy of predominant distribution 271 cases (89.1%) of them. In rock types of 52, those of 6, which are Jgr, Qa, Kp, Krt+Kav+Kav1+Kav2, Kbgr and GC2, occupy total 182 cases (59.9%) showing distinctly dominant trends from the rest of 46.

Areal Distribution Ratios of Constituent Rocks with Geologic Ages and Rock Types by GIS in the Gyeongsangbug-Do and Daegu Areas (GIS에 의한 경북-대구지역 구성암류의 지질시대별 및 암종별 분포율)

  • Yun, Hyun-Soo;Lee, Jin-Young;Yang, Dong-Yoon;Hong, Sei-Sun;Kim, Ju-Yong;Yi, Sang-Heon
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.1-18
    • /
    • 2010
  • On the ArcGIS 9.2 program in Gyeongsangbug-Do and Daegu areas, distribution ratios of rock types and geologic ages were obtained from the 1 : 250,000 scaled digital geologic and geomorphic maps. The obtained distribution ratios here will be used the geologic information data for industrialization and development planning of rock resources. The Gyeongsangbug-Do area consists of 86 rock types that can be divided into 10 large groups in geologic age. Their geologic distribution ratios show the decreasing in the order of Cretaceous, Precambrian, Jurassic, Quaternary, Age-unknown and Tertiary, all of which occupy the prevailing ratio of 96.30% in the area. Of which, sixteen rock types are somewhat dominant ones (64.04%). They are of Precambrian Yulri group and granite gneiss of the Yeongnam metamorphic complex and biotite gneiss of the Sobaegsan metamorphic complex, Age-unknown granite, Jurassic granite, Cretaceous Gasongdong and Dogyedong formations of the Yeongyang sub-basin, Nagdong and Chunsan formations and intermediate-basic volcanics of Euiseong sub-basin, Jinju and Jindong formations and andesite-andesitic tuff of Milyang sub-basin, and hornblende granite, and Quaternary alluvium. They show relatively narrow ranges of 2.07-6.53% in geologic distribution in exception of Jurassic granite showing 13.14%. And the rest 70 rock types appear to very narrow range between 0.01 and 1.94 %. On the other hand, twelve rock types are developed in the Daegu area. Their geologic ages appear to be classified into Cretaceous and Quaternary occupying 86.05% and 11.39%, respectively. Seven rock types take possession of 94.04% among the all rocks. The major rock types are Jinju formation of the Sindong group, Chilgog, Haman and Jindong formations of the Hayang group, andesite and andesitic tuff, hornblende granite and Quaternary alluvium. With exception of andesite and andesitic tuff of 37.40%, the types show slightly wide range of 3.25-17.39%, which apparently differ trends from that of Gyeongsangbug-Do area. And the rest of rock types have narrow ranges of 0.22-1.81% in the Daegu area.

Geological Characteristics and Heat Flow Relationship in South Korea (남한지역 지질특성과 지열류량의 상호 관련성)

  • 김형찬;이사로;송무영
    • Economic and Environmental Geology
    • /
    • v.37 no.4
    • /
    • pp.391-400
    • /
    • 2004
  • The purpose of this study is to analyze the geothermal anomaly based on the relationship between heat flow values and geologic settings in South Korea. For this, a total of 247 heat flow data was constructed to spatial database and the spatial database was overlaid with 1 : 1,000,000-scale digital geologic map using GIS. As the result, the average of heat flow is 64$\pm$14mW$m^{-2}$in South Korea. In the lithological aspect, the area of sedimentary rock shows high heat flow of 74mW$m^{-2}$, sedimentary/volcanic rock area 62mW$m^{-2}$, plutonic rock area 63mW$m^{-2}$ and metamorphic rock area 61mW$m^{-2}$. In the geologic time sequence, the Cenozoic strata has 91mW$m^{-2}$, the Mesozoic and Paleozoic strata 65mW$m^{-2}$, the Proterozoic strata 55mW$m^{-2}$ and the Archean strata 61mW$m^{-2}$.

Areal Distribution Ratios of the Constituent Rocks with the Geologic Ages and Rock Types in the Chungbug-Chungnam-Daejeon Areas (충북-충남-대전지역 구성암류의 지질시대별 및 암종별 분포율)

  • Yun, Hyun-Soo;Lee, Jin-Young;Yang, Dong-Yoon;Hong, Sei-Sun
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.191-205
    • /
    • 2008
  • In order to use the geologic information data such as industrialization of rock resources, site enlargement and development planning, distributive ratios of rock types and geologic ages were obtained by the ArcGIS 9.2 program, and digital geologic and geographic maps of 1:250,000 scale, in the Chungbug, Chungnam and Daejeon areas, respectively. In the Chungbug area, 64 rock kinds are developed and their geologic ages can be classified into 8 large groups. In the geologic ages, the ratios are decreasing in the order of Jurassic, Precambrian, Age-unknown, Cretaceous, Quaternary, Cambro-Ordovician and Carboniferous-Triassic ages, all of which comprise most ratios of 98.48% in the area. In the rock types, the ratios show the decreasing order of Jurassic Daebo granite, Precambrian banded gneiss of Gyeonggi metamorphic complex, Cretaceous biotite granite, Quaternary alluvium, Great limestone group, Lower phyllite zone and Meta-sandy rock zone of age-unknown Ogcheon group, Triassic Cheongsan granite, Precambrian granitic gneiss of Gyeonggi gneiss complex, Pebble bearing phyllite zone of age-unknown Ogcheon group and biotite gneiss of Sobaegsan metamorphic complex, all of which comprise the prevailing ratio of 84.27% in the area. In the Chungnam area, 35 rock types are developed and their geologic ages can be classified into 6 large groups. In the geologic ages, the ratios are decreasing in the order of Precambrian, Jurassic and Quaternary ages, which occupy the prevailing ratio of 87.55% in the area. In the rock types, the ratios show the decreasing order of Jurassic Daebo granite, Precambrian banded gneiss of Gyeonggi metamorphic complex, Quaternary alluvium, Precambrian granite and granitic gneiss of Gyeonggi gneiss complex, Cretaceous acidic dykes, Lower phyllite zone and Pebble bearing phyllite zone of age-unknown Ogcheon group and Quaternary reclaimed land, which occupy the ratios of 74.28% in the area. In the Daejeon area, 11 rock types are developed and their geologic ages can be classified into 5 large groups. In the ages, the ratios are decreasing in the order of Jurassic, Age-unknown and Quaternary, which occupy most ratios of 93.40% in the area. In the rock types, the ratios show the decreasing order of Jurassic Daebo granite, Quaternary alluvium and Lower phyllite zone and Pebble bearing phyllite zone of age-unknown Ogcheon group, which occupy the prevailing ratios of 91.09% in the area.