• Title/Summary/Keyword: 지질경계

Search Result 387, Processing Time 0.018 seconds

A Case Study on the Calculation of Greenhouse Gas Emissions in Research and Development Activities of Geo-Technology in Korea: A Study on the Basic Projects of the Korea Institute of Geoscience and Mineral Resources (지질자원기술분야 연구개발활동 온실가스 배출량 산정 사례연구 - 한국지질자원연구원 기본사업을 대상으로 -)

  • Seong-Yong Kim;Chul-Ho Heo;Il-Hwan Oh
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.2
    • /
    • pp.147-166
    • /
    • 2023
  • This study aimed to develop and apply guidelines for calculating greenhouse gas emissions to activate the contribution of the Korea Institute of Geoscience and Mineral Resources (KIGAM) for institutional-level research activities. In addition, we intended to improve awareness by identifying greenhouse gas emissions from KIGAM's basic research and development (R&D) activities in fiscal 2022. Herein, the research plan and budget contents of individual projects were analyzed, whilst the boundaries and scopes of greenhouse gas emissions were determined, with 22 cases being derived as either direct, indirect, or other sources of emissions. Subsequently, research activity emissions were calculated by emission source. The greenhouse gas emissions of KIGAM's 2022 basic project R&D activities were 2,041.506 tCO2eq, of which direct emissions were 793.235 tCO2eq (38.86%), indirect emissions comprised 305.647 tCO2eq (14.97%), whilst other emissions were 942.624 tCO2eq (46.18%). In particular, greenhouse gas emissions per 100 million won in the KIGAM's basic projects for fiscal 2022 (a total of 96.661 billion won) was calculated as 2.11 tCO2eq, whilst greenhouse gas emissions per participating researcher (was 4.800 tCO2eq. Such calculations should be carried out annually rather than once and accumulated for at least 5 years. Accordingly, it will be possible to standardize specific matters that influence emissions according to differences in research field characteristics and methods, thus guiding greenhouse gas emission reduction management in the future and evaluating the contributions of Environmental, Social and Governance (ESG) management to the environmental sector.

Facies and sequence analysis on the Lower Ordovician Mungok Formation (전기 오오도비스기 문곡층의 시퀀스 및 상 분석)

  • Choi Yong Seok;Lee Yong Il
    • The Korean Journal of Petroleum Geology
    • /
    • v.9 no.1_2 s.10
    • /
    • pp.1-15
    • /
    • 2001
  • Hierarchically controlled sequence stratigraphic analysis shows that the Lower Ordovician mixed carbonatesiliciclastic Mungok Formation, Korea consists of three depositional sequences: T1, T2, and T3 in ascending order. Sequence boundaries are generally marked by abrupt transition from coarse-grained shallow-water carbonates to finegrained deeper-water carbonates mixed with fine-grained siliciclastics, and show indication of subaerial exposure such as karstification. Within this sequence stratigraphic framework, facies characteristics indicate that the Mungok sequences were mostly deposited on a subtidal ramp without slope break. The Mungok ramp had been under the influence of frequent tropical storm activity during deposition. The difference in lithology of tempestites seems to have been controlled by the nature of substrates and by proximality. High-frequency cycles consist of upward-shallowing facies successions. Cycles of shallow-water and basinal deposits are not well represented, probably due to cycle amalgamation. Cycle stacking patterns do not show a consistent thickness change that is usually associated with a large-scale sea-level change probably because of unfilled accommodation space.

  • PDF

Subsurface Imaging using Headwave Stacking (선두파 중합을 이용한 천부지층의 영상화)

  • Park Jung-Jae;Ko Seung-Won;Shin Chang-Soo;Suh Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.3
    • /
    • pp.178-184
    • /
    • 2002
  • For economy and convenience, seismic refraction survey is widely used in surveying for large civil engineering work. The purpose of this study is to obtain the numerical responses of various models using Kirchhoff migration, and to analyze its application to the real data processing. Synthetic traveltime curve was calculated by vidale's algorithm, and various models such as 2 or 3 layer model and irregular topography model are tested to simulate the response of real structure. In order to compare the effect of initial velocity model, true velocity models, inversion results by tomography, smooth velocity models are used as an initial guess. The responses of model data show that the algorithm of this study is more sensitive to initial velocity model than the reflection survey, so choosing a suitable initial velocity model will be the most important thing in real data processing.

Hydrogeological Characteristics of Seawater Intrusion in the Coastal Area (임해지역 주변에서의 해수침투특성)

  • 김천수;김경수;배대석;송승호
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.2
    • /
    • pp.61-72
    • /
    • 1997
  • With increasing activities for groundwater withdrawal and for the construction of underground cavern in the coastal areas, the seaward flow of groundwater has been disturbed or even reversed, resulting in seawater intrusion in aquifers. This phenomenon would be attributed to the freshwater contamination and the corrosion of steel materials. The hydrogeological and geochemical investigations have performed to characterize the seawater intrusion into the underground caverns located in the coastal area. Assumimg the inland aquifer as unconfined one, we have found out that the theoretical interface of freshwater-seawater is far different from the pathways identified. In the study site, the main pathways of seawater intrusion into the underground cavern are characterized as the sub-horizontal fractures (zones). The seawater intrusion in granitic terrane would depend mainly on the characteristics of conductive fracture system developed along the coastal area.

  • PDF

Thermodynamic Prediction of Groundwater-Rock Interaction Products around Underground Disposal Sites (심부 처분장 주변 지하수-암석 반응 생성물의 열역학적 예측)

  • Lee, Jong-Un
    • Economic and Environmental Geology
    • /
    • v.48 no.2
    • /
    • pp.131-145
    • /
    • 2015
  • Thermodynamic prediction of weathering products from primary aquifer minerals around underground disposal sites was investigated. The distribution of solubility quotients for kaolinite-smectite reactions showed the trend of reaching at equilibrium with Ca-, Mg-, and Na-smectite for deep groundwaters in granitic aquifers. The values of $10^{-14.56}$, $10^{-15.73}$, and $10^{-7.76}$ were proposed as equilibrium constants between kaolinite and Ca-, Mg-, and Na-smectite end members, respectively. On stability diagrams, most of deep groundwaters were located at equilibrium boundaries between stability fields of kaolinite and smectites or on stability fields of smectites and illite. Shallow groundwaters in basic rock aquifer were plotted at the same stability areas of deep granitic groundwaters on stability diagrams. The results indicated that the primiary mineralogical composition may be important to predict weathering products in deep aquifers.

Experimental Simulations of Borehole Breakouts and Their Relationship to In Situ Stress Magnitudes (시추공벽 파쇄 모의 시험 및 현장 응력과의 관계 연구)

  • 송인선
    • The Journal of Engineering Geology
    • /
    • v.10 no.3
    • /
    • pp.225-236
    • /
    • 2000
  • We conducted laboratory simulations of deep vertical drilling into the earth's crust to induce borehole breakouts and investigated their potential use for estimating in situ stress magnitudes in Westerly granite and Berea sandstone. Our experiments consisted of two major stages, a series of triaxial tests and borehole-breakout formation tests under a wide range of far-field stresses. We derived the Mohr-Coulomb, Nadai and Mogi failure criteria from the triaxial test results. Each criterion was compared with the stress condition at breakout boundaries. We concluded that the well known Mohr-Coulomb criterion is not compatible with the stress condition at breakout failure. On the other hand, polyaxial (truly triaxial) failure criteria such as the Nadai criterion for Berea sandstone and the Mogi criterion for Westerly granite were much more suitable for predicting breakout failure zone. Such failure criteria appeared to enable the reliable estimation of the magnitude of one of two horizontal principal stresses if the other one is known.

  • PDF

A Dye Tracer Study of Infiltration Pattern in a Residual Soil Developed from Granite (화강암 기원 잔적토양에서 염료추적자의 침투 유형에 관한 연구)

  • 전철민;김재곤;이진수;김탁현
    • Economic and Environmental Geology
    • /
    • v.37 no.4
    • /
    • pp.383-389
    • /
    • 2004
  • Understanding flow pattern of water and solute in subsurface is essential for the reduction and prevention of contamination of soil and groundwater and for the investigation and remediation of contaminated site. The objective of this study is to examine the infiltration pattern in a soil developed from the Jurassic granite using (Brilliant Blue FCF $C_{37}H_{34}N_{2}Na_{2}O_{9}S_{3}$), the nonfluorescent and nontoxic food dye. All image processing was conducted using geographic image processing software, ER Mapper, Version 6.2. The dye coverage was determined by counting the stained pixels in the photographs (80${\times}$80cm, 80TEX>${\times}$5cm) for the vertical and horizontal view. A homogeneous matrix flow occurred in the A horizon with weak, medium granular structure and fingering at the interface of finer-textured A horizon and coarser-textured C horizon. Pegmatitic vein originated from the granite and plant root in C horizon induced preferential flow.

Determination of Flow Patterns for Multi-Phase Flow in Petroleum Production Systems (석유생산 시스템에서 다상유동의 패턴 결정)

  • Lee, Kun-Sang;Kim, Hyun-Tae
    • Economic and Environmental Geology
    • /
    • v.44 no.2
    • /
    • pp.153-159
    • /
    • 2011
  • A comprehensive mechanistic model has been used to determine the flow pattern for gas-oil two-phase flow in pipes of petroleum production system. Depending on operational parameters, geometrical variables, and physical properties of the two phases, the two phases shows a specific flow patterns. For different parameters of the system, How pattern were compared for wide range of superficial velocities of oil and gas. In a variety of parameters, the inclinational angle and superficial velocities of oil and gas are the most dominant factors in determining the flow patterns for two-phase flow in pipelines. Other parameters such as pipe diameter and fluid properties have a limited effect on the change of flow patterns except for near transition. The mechanistic model is shown to be useful to determine the flow pattern in situations where either an experimental evaluation in a laboratory or reliable correlations are not available.

K-Ar Ages for Mesozoic Volcanic Rocks in the Geumdang Island, Jeonam, Korea (전남 금당도지역에 분포하는 중생대 화산암에 대한 K-Ar 연대)

  • Kim, Myung-Gee;Kang, Ji-Won;Kim, Cheong-Bin
    • Journal of the Korean earth science society
    • /
    • v.34 no.4
    • /
    • pp.329-335
    • /
    • 2013
  • Based on mineral assemblages, field occurrences, the volcanic rocks distributed in the Geumdang Island area are divided into three types: rhyolite, porphyritic rhyolite and intermediated dyke rock. In a diagram of [TAS (total alkali-silica)], rhyolites and porphyritic rhyolites belong to the rhyolite-dacite field and rhyolite field, respectively. As to the times when the rhyolite and porphyritic rhyolite rocks were formed a whole rock K-Ar age was obtained. These absolute age determinations have revealed that the former (rhyolite) has an age of 76-78 Ma and belongs to the Late Cretaceous (Campanian) and the latter (porphyritic rhyolite) is 71-72 Ma in age and thus belongs to the boundary between the Campanian and Maastrichtian. These geological ages are associated with the igneous activity of the Yuchon Group which occurred vigorously in the southern part of the Korean peninsula during the Late Cretaceous. The various geological ages of volcanic rocks distributed in the southwestern part of the peninsula and of igneous rocks found in the Cretaceous formation which contain a wide variety of minerals indicate that in this area, volcanic activities continued vigorously as a result of the collision of the Eurasian and Pacific Plates between 108-71 Ma.

A Study on the Lineament Analysis Along Southwestern Boundary of Okcheon Zone Using the Remote Sensing and DEM Data (원격탐사자료와 수치표고모형을 이용한 옥천대 남서경계부의 선구조 분석 연구)

  • Kim, Won Kyun;Lee, Youn Soo;Won, Joong-Sun;Min, Kyung Duck;Lee, Younghoon
    • Economic and Environmental Geology
    • /
    • v.30 no.5
    • /
    • pp.459-467
    • /
    • 1997
  • In order to examine the primary trends and characteristics of geological lineaments along the southwestern boundary of Okcheon zone, we carried out the analysis of geological lineament trends over six selected sub-areas using Landsat-5 TM images and digital elevation model. The trends of lineaments is determined by a minimum variance method, and the resulting geological lineament map can be obtained through generalized Hough transform. We have corrected look direction biases reduces the interpretability of remotely sensed image. An approach of histogram modification is also adopted to extract drainage pattern specifically in alluvial plains. The lineament extracting method adopted in this study is very effective to analyze geological lineaments, and that helps estimate geological trends associated various with the tectonic events. In six sub-areas, the general trends of lineaments are characterized NW, NNW, NS-NNE, and NE directions. NW trends in Cretaceous volcanic rocks and Jurassic granite areas may represent tension joints that developed by rejuvenated end of the Early Cretaceous left-lateral strike-slip motion along the Honam Shear Zone, while NE and NS-NNE trends correspond to fault directions which are parallel to the above Shear Zone. NE and NW trends in Granitic Gneiss are parallel to the direction of schitosity, and NS-NNE and NE trends are interpreted the lineation by compressive force which acted by right-lateral strike-slip fault from late Triassic to Jurassic. And in foliated Granite, NE and NNE trends are coincided with directions of ductile foliation and Honam Shear Zone, and NW-NNW trends may be interpreted direction of another compressional foliation (Triassic to Early Jurassic) or end of the Early Cretaceous tensional joints. We interpreted NS-NNE direction lineation is related with the rejuvenated Chugaryung Fault System.

  • PDF