• Title/Summary/Keyword: 지진 취약도 분석

Search Result 174, Processing Time 0.025 seconds

A study on the case investigation and vulnerability analysis of earthquake damage (지진 피해 조사의 사례와 지진 피해 취약도 분석 방안)

  • Song, Wan-Young;Kim, Jong-Bae;Cho, Myeong-Heum;Choi, Jun-Ho;Lee, Young-Wook
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2016.11a
    • /
    • pp.212-216
    • /
    • 2016
  • 지진 피해조사 사례와 지질도 지층의 특성 및 건물구조의 특성으로 지진 피해 취약도 분석방법을 제시하였다. 지진피해 예방을 위하여 최근 경주지역 지진발생으로 조사된 피해사례를 검토하여 정책마련에 도움 되기를 바라는 경우가 있다. 그러나 대부분의 조사사례는 피해규모를 정량적으로 분류하기 어렵다는 점에서 지진에 최적화된 기초자료 조사가 필요하다. 따라서 지진피해 예방을 위하여 기존 조사 자료와 함께 공간정보를 이용한 취약도 분석이 유망한 지진방재 방법론 중 하나가 될 수 있다. 다양한 공간자료를 기반으로 지진피해 취약도를 분석하는 방법론은 보다 수치적이고 객관적이어서 지진피해 예방을 위한 도시설계와 안전정책으로 반영할 수 있다. 앞으로 수치적인 분석을 실시한다면 지진에 대한 전국적 취약정도를 구분하고 우선적 안전관리 대상지를 선정하여 국가 및 지자체 예산적용에 효율적 관리방안이 도출될 수 있을 것이다.

  • PDF

Probabilistic Safety Analysis for Seismic Performance Evaluation of Bridges -Focused on Fragility Analysis using Capacity Spectrum Method- (교량의 내진성능 평가를 위한 확률적 지진안전성 분석 - 역량스펙트럼법을 이용한 지진취약도 분석을 중심으로-)

  • 이진학;김상훈
    • Computational Structural Engineering
    • /
    • v.17 no.2
    • /
    • pp.31-41
    • /
    • 2004
  • 몇 일 전 필자는 대전에 위치한 한 연구소에 근무하고 계신 분으로부터 지진취약도 분석에 관한 문의 전화를 받았다. 그분의 대학 후배가 지진취약도에 대한 연구를 하고 싶다는 내용이었다. 최근 필자는 그분 외에도 다른 분들과 함께 지진취약도 분석 및 이를 확장한 바람에 의한, 혹은 홍수에 의한 구조물의 확률적 안전성 분석에 관한 논의를 하곤 하였다. 현재까지 국내에서는 구조물의 취약도 분석에 대한 연구가 그다지 활발하지 않으나, 이에 대한 관심은 지속적으로 증가할 것으로 보여진다. 지진취약도를 한마디로 요약하면, "임의의 크기를 갖는 지진이 발생하였을 때, 구조물에 어느 규모 이상의 손상이 발생할 확률"을 의미하는 것으로, 구조물의 확률적 지진안전성으로 부를 수 있다. 예를 들어, "최대지반가속도가 0.1g인 지진이 발생하였을 때, 해당 구조물에 보수를 요하는 수준 이상의 손상이 발생할 확률이 30%이다"와 같은 정보를 지진취약도 곡선으로부터 읽을 수 있다. (중략)

Seismic Fragility Analysis of PSC Containment Building by Nonlinear Analysis (비선형 지진해석에 의한 PSC 격납건물의 지진취약도 분석)

  • Choi, In-Kil;Ahn, Seong-Moon;Choun, Young-Sun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.1 s.47
    • /
    • pp.63-74
    • /
    • 2006
  • The seismic fragility analysis method has been used as a quantitative seismic safety evaluation method for the NPP(Nuclear Power Plant) structures and equipments. The seismic fragility analysis gives a realistic seismic capacity excluding the convertism included in the design stage. The conservatism is considered as the probabilistic parameters related to the response and capacity in the seismic fragility analysis. In this study, the displacement based seismic fragility analysis method was proposed based on the nonlinear dynamic analysis results. In this study, the seismic safety of the prestressed concrete containment building of KSNP(Korean Standard Nuclear Power Plant) was evaluated for the scenario earthquakes, neat-fault, far-fault, design earthquake and probability based scenario earthquake, which can be occurred in the NPP sites.

Fragility Curve Evaluation of Reinforced Concrete Shear Wall Structures according to Various Nonlinear Seismic Analysis Methods (다양한 비선형지진해석방법에 따른 철근콘크리트 전단벽 구조물의 취약도곡선 평가)

  • Jang, Dong-Hui;Song, Jong-Keol;Kang, Sung-Lib;Park, Chang-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.1-12
    • /
    • 2011
  • Seismic fragility analysis has been developed to evaluate the seismic performance of existing nuclear power plants, but now its applicability has been extended to buildings and bridges. In general, the seismic fragility curves are evaluated from the nonlinear time-history analysis (THA) using many earthquake ground motions. Seismic fragility analysis using the nonlinear THA requires a time consuming process of structural modeling and analysis. To overcome this shortcoming of the nonlinear THA, simplified methods such as the displacement coefficient method (DCM) and the capacity spectrum method (CSM) are used for the seismic fragility analysis. In order to evaluate the accuracy of the seismic fragility curve calculated by the DCM and the CSM, the seismic fragility curves of a reinforced concrete shear wall structure calculated by the DCM and CSM are compared with those calculated by the nonlinear THA. In order to construct a numerical fragility curve, 190 artificially generated ground motions corresponding to the design spectrum and the methodology proposed by Shinozuka et al. are used.

Seismic Fragility Analysis of Substation Systems by Using the Fault Tree Method (고장수목을 이용한 변전소의 지진취약도 분석)

  • Kim, Min-Kyu;Choun, Young-Sun;Choi, In-Kil;Oh, Keum-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.47-58
    • /
    • 2009
  • In this study, a seismic fragility analysis was performed for substation systems in Korea. To evaluate the seismic fragility function of the substation systems, a fragility analysis of the individual equipment and facilities of the substation systems was first performed, and then all systems were considered in the fragility analysis of the substation systems using a fault-tree method. For this research, the status of the substation systems in Korea was investigated for the classification of the substation systems. Following the classification of the substation systems, target equipment was selected based on previous damage records in earthquake hazards. The substation systems were classified as 765kV, 345kV, and 154kV systems. Transformer and bushing were chosen as target equipment. The failure modes and criteria for transformer and bushing were decided, and fragility analysis performed. Finally, the fragility functions of substation system were evaluated using the fault tree method according to damage status.

Seismic Fragility Analysis of Curved Bridge Structure by Girder Section Shape (거더 단면형상 변화에 따른 곡선교량의 지진 취약도 분석)

  • Jeon, Juntai;Ju, Buseog;Son, Hoyoung
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.4
    • /
    • pp.626-633
    • /
    • 2019
  • Purpose: The primery objecting of this paper is to explore the seismics fragility of curved bridge based on the change of girder section. Method: The cross section of the bridge structure was constructed with I, T, and Box shapes and then, in order to perform the seismic fragility 24 seismic ground motions were used, including Gyeongju Pohang Earthquake. Result: Fist, T-Shape of the bridge strucrue was much fragility in terms of the stress on girder section, in comparison to the other shapes. The seismic fragilies of the structures with respect to displacement(drift ratio), however, were shown simialr. Conclusion: In other to wvaluation the seismic fragility of curved structure using different girder shapes, analytical models of the structure were constructed and then, the probability failure of box-shape girder was shown lower probability. In further, Parametric studies of curved structures must be conducted.

Analysis of Seismic Fragility Improvement Effect of an Isolated Rotational Equipment (면진장치를 설치한 회전기기의 지진취약도 개선효과 분석)

  • Kim, Min-Kyu;Ohtori, Yasuki;Choun, Young-Sun;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.6
    • /
    • pp.69-78
    • /
    • 2007
  • In this study, for the evaluation of seismic safety of the isolated Emergency Diesel Generator (EDG) System more quantitatively, the seismic fragility analysis method were proposed. Using the proposed method, seismic fragility analysis performed and a seismic risk of EDG system was present. The fragility analysis performed not for an existing EDG system but also for an isolated EDG system which increases the seismic capacity. At first, numerical models for existing and isolated EDG system were constructed and seismic response analysis performed according to input seismic waves and peak ground accelerations. An uncertainty factors and failure modes of both fixed and isolated EDG system were assumed for fragility analysis. The HCLPF values were evaluated for the compare the improvement effect using the isolation system. As a result, the isolation system can make better the seismic fragility of EDG system, but the failure of isolation system was govern the behavior of whole system.

Parameter Analysis of the Seismic Fragility Function for URM Buildings Using Capacity Spectrum Analysis (역량스펙트럼 해석에 의한 비보강 조적조 건축물의 지진취약도함수 매개변수 분석)

  • Lee, Jung-Han;Park, Min-Kyu;Kim, Hye-Won;Jung, Woo-Young;Park, Byung-Cheol;Yi, Waon-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.383-386
    • /
    • 2009
  • 본 연구는 HAZUS에서 제시하고 있는 비보강 조적조 건축물의 구조적 손상상태에 대한 지진취약도함수와 관련하여 층간변위율 및 스펙트럼 변위 등의 매개변수를 평가하고 또한 국내 상황에 적합한 기존 비보강 조적조 건축물의 지진취약도곡선의 도출을 목적으로 하였다. 국내 상황을 고려한 지진피해를 추정하기 위하여 먼저 기존 비보강 조적조 건축물의 현황파악 및 지진취약도함수 산출방법을 분석하였다. 일반적으로 HAZUS에서 제시하고 있는 지진취약도함수는 역량스펙트럼을 변환시킨 가속도-변위응답 스펙트럼법을 기본적으로 사용하는 상황으로 국내 기존 비보강 조적조 건축물에 대한 지진취약도함수 개발을 위하여 Midas GEN Ver.741 구조해석프로그램을 사용하여 실제 23개동의 비보강 조적조 건축물을 대상으로 역량스펙트럼 해석을 수행하였다. 연구결과를 통하여 지진취약도함수의 주요 매개변수인 손상상태별 층간변위율 및 스펙트럼 변위를 제시하였다.

  • PDF

Seismic Fragility Analysis of Curved Bridge under High Frequency Earthquakes (고주파 지진에 의한 곡선 교량의 지진 취약도 분석)

  • Jeon, Juntai;Ju, Bu-Seog;Son, Hoyoung
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.4
    • /
    • pp.806-812
    • /
    • 2020
  • Purpose: This is aimed to evaluate the seismic fragility of curved bridge structure with I-shape girder subjected to 12 high frequency ground motions based on Gyeongju earthquake. Method: The linear elastic finite element model of curved bridge with I-Shape cross section was constructed and them linear elastic time history analyses were performed using the 12 artificial ground motions. Result: It was found that displacement response(LS1, LS2) was failed after PGA 0.1g and the stress response also showed failure after PGA 0.2g. Conclusion: The curved bridge with I-shape girder was sensitive to high frequency earthquakes.

Disaster-Prevention System of Transportation Network used by GIS and Seismic Fragility Analysis (GIS 및 지진취약도 분석기법을 이용한 교통 네트워크의 방재 시스템)

  • Lee, Hyung-Jin;Park, Byung-Hee;Jang, Il-Young
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.2 s.21
    • /
    • pp.25-35
    • /
    • 2006
  • Recently seismic fragility analysis method has been widely used for the seismic probabilistic risk assessment of infrastructures such as nuclear power plants, buildings and bridges because of its probabilistic characteristics. Furthermore, this technique has been applied to large-scale social systems consisted of each infrastructures by combing GIS. In this paper, the applicability of this technique to domestic infrastructural systems was studied. The transportation network was selected as one of these domestic infrastructural systems. Example studies were peformed about Changwon city. Nonlinear time history analysis, with a maximal likelihood approach were conducted to establish the fragility curves of each infrastrucures (bridges). GIS analysis was also applied to the analysis of whole infrastructural systems. The results show that it is very useful to predict seismic probabilistic risk assessment of this domestic transportation network. However, it also shows that further studies such as more suitable damage criterion to domestic structure and precise nonlinear analysis techniques should be developed to predict more precise results.