• Title/Summary/Keyword: 지진 예측

Search Result 552, Processing Time 0.023 seconds

Evaluation of Seismic Damage for RC Bridge Piers II : Numerical Analysis (철근콘크리트 교각의 지진손상 평가 II : 수치해석 예)

  • 김태훈;김운학;신현목
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.41-52
    • /
    • 2002
  • In the companion paper, nonlinear finite element analysis procedures are presented for the seismic damage evaluation of RC bridge piers. This paper defines a damage index based on the predicted hysteretic behavior of a RC bridge pier. Damage indices aim to provide a means of quantifying numerically the damage in RC bridge piers sustained under earthquake loading. The proposed numerical method is applied to RC bridge piers tested by other, and compared to existing damage indices. The proposed numerical method gives a realistic prediction of damage throughout the loading cycles for several test specimens investigated.

A Development of a Seismic Vulnerability Model and Spatial Analysis for Buildings (건물에 대한 지진취약도 모델링 및 공간 분석)

  • Kim, Sang-Bin;Kim, Seong-Hoon
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.10
    • /
    • pp.9-18
    • /
    • 2020
  • The purpose of this study is to suggest a method of predicting seismic vulnerability and safety conditions of each building in a targeted area. The scope of this study includes 'developing a simulation model for precaution activities,' 'testing the validity of the developed model', From the facility point of view, target of this study is a local building system. According to the literature review, the number of earthquake prediction modeling and cases with GIS applied is extremely few and the results are not proficient. This study is conducted as a way to improve the previous researches. Statistic analyses are conducted using 348 domestic and international data. Finally, as a result of the series of statistical analyses, an adequate model is developed using optimization scale method. The ratio of correct expectation is estimated as 87%. In order to apply the developed model to predict the vulnerability of the several chosen local building systems, spatial analysis technique is applied. Gangnam-gu and Jongro-gu are selected as the target areas to represent the characteristics of the old and the new downtown in Seoul. As a result of the analysis, it is discovered that buildings in Gangnam-gu are relatively more dangerous comparing to those of Jongro-gu and Eunpyeong-gu.

Numerical Simulations of 1983 Central East Sea Tsunami at Imwon: 2. Run-up Process at Imwon Port (임원에서의 1983년 동해 중부 지진해일 수치모의: 2. 임원항에서의 범람)

  • Lee, Ho-Jun;Kim, Kyung-Hee;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.4 s.129
    • /
    • pp.453-461
    • /
    • 2002
  • The run-up process of the 1983 Central East Sea Tsunami along the Eastern Coast is numerically investigated in this study. A finite difference numerical model based on the nonlinear shallow-water equations is employed. The maximum run-up height at Imwon is predicted and compared to field observation. A good agreement is observed. A maximum inundation map is made based on the maximum run-up heights to accentuate hazards of tsunami flooding.

Nonlinear Seismic Response and Failure Behavior of reinforced Concrete Shear Wall Subjected to Base Acceleration (지반가속도에 의한 철근콘크리트 전단벽의 비선형 지진응답 및 파괴거동)

  • 유영화;신현목
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.3
    • /
    • pp.21-32
    • /
    • 1999
  • A ground motion resulting from the destructive earthquakes can subject reinforced concrete members to very large forces. The reinforced concrete shear walls are designed as earthquake-resistant members of building structure in order to prevent severe damage due to the ground motions. The current research activities on seismic behavior of reinforced concrete member under ground motions have been limited to the shaking table test or equivalent static cyclic test and the obtained results have been summarized and proposed for the seismic design retrofit of structural columns or shear walls. The present study predicted the seismic response and failure behavior of reinforced concrete shear wall subjected to base acceleration using the finite element method. A decrease in strength and stiffness, yielding of reinforcing bar, and repetition of crack closing and opening due to seismic load with cyclic nature are accompanied by the crack which is necessarily expected to take place in concrete member. In this study the nonlinear material models for concrete and reinforcing bar based on biaxial stress field and algorithm of dynamic analysis were combined to construct the analytical program using the finite element method. The analytical seismic response and failure behaviors of reinforced concrete shear wall subjected to several base accelerations were compared with reliable experimental result.

  • PDF

A Preliminary Study of the Global Application of HAZUS and ShakeMap for Loss Estimation from a Scenario Earthquake in the Korean Peninsula (지진재해예측을 위한 HAZUS와 ShakeMap의 한반도에서의 적용가능성 연구)

  • Kang, Su Young;Kim, Kwang-Hee;Kim, Dong Choon;Yoo, Hai-Soo;Min, Dong-Joo;Suk, Bbongchool
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.1
    • /
    • pp.47-59
    • /
    • 2007
  • Efficiency and limitations of HAZUS-MH, a GIS based systematic and informative system developed by FEMA and NIBS for natural hazard loss estimations, are discussed by means of a pilot study in the Korean Peninsula. Gyeongsang-do has been selected for the test after careful reviews of previous studies including historical and modern seismicity in the peninsula. A ShakeMap for the selected scenario earthquake with magnitude 6.7 in Gyeongju area is prepared. Then, any losses due to the scenario event have been estimated using HAZUS. Results of the pilot test show that the study area may experience significant physical, economic, and social damages. Detailed study in the future will provide efficient and crucial information to the decision makers and emergency agents to mitigate any disaster posed by natural hazards.

  • PDF

Analysis of Earthquake Disaster Area in Gyeongju-si based on Spatial Data (공간정보기반 경주 지진 피해지역 현황분석)

  • Cho, Myeong-Heum;Kim, Mi-Song;Park, Jin-Yi;Lim, Jung-Tak;Park, Young-Jin
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2016.11a
    • /
    • pp.240-241
    • /
    • 2016
  • 본 논문에서는 지난 9월 12일에 한반도 관측 이래 최대 규모 5.8 지진이 발생한 경주 피해현황 대장(엑셀)을 지자체로부터 제공받아 피해현황에 대해 공간분석을 실시하였다. 현황정보를 기반으로 지진피해 주소 데이터를 기반으로 지오코딩을 수행하였으며 약 5,906건(95.6%)에 대한 속성정보를 공간정보화 하였다. 지질도 및 단층정보로 구축한 공간DB를 중첩 분석하여, 시각화된 지진피해 현황 결과를 제시하였다. 마지막으로 지진피해지역의 특징 및 현황 분석이 일차적으로 이루어져야 하며, 향후 지진피해 데이터 및 공간분석을 기반으로 지진 발생시 피해가 예상되는 지역에 대해 예측하는 모델링 및 시스템 고도화를 추진해야 할 것이다.

  • PDF

The Liquefaction Assessment for Large-sized Waste Landfill Site (대형폐기물 매립지반 액상화 평가)

  • Park, lnn-Joon;Choi, Seung-Ho;Yoo, Byung-Joon;Mha, Ho-Seong
    • Journal of Korean Society of societal Security
    • /
    • v.2 no.2
    • /
    • pp.69-74
    • /
    • 2009
  • The purpose of this research is to assess the aseismic safety for the large-sized waste landfill site based on the results from liquefaction potential analysis. For successful achievement of research, the simplified liquefaction analysis and detailed liquefaction analysis using data from lab test and seismic response analysis are executed. Based on the simplified liquefaction analysis, the possibility of liquefaction is occurred at only BH-14 with maximum acceleration 0.169 g. Therefore, liquefaction possibility of BH-14 is evaluated by the detailed liquefaction analysis again. The safety factor greater than 1.0 from the result of analysis at BH-14 guarantees safety of liquefaction.

  • PDF

Evaluation of Liquefaction Potential for Marine Silty Sand Deposits during Earthquake (서해안 사질토지반의 지진시 액상화 예측)

  • 이희명;정두영
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.1
    • /
    • pp.23-33
    • /
    • 1994
  • Liquefaction characteristics of the reclaimed marine sand deposits is studied by means of the dynamic response analysis and the cyclic triaxial compression test. 1) From the result of the dynamic response analysis. it was found that the amplification of ground surface maximum acceleration varied with input earthquake motions and soil data, and earthquake coefficients were proposed to be applicable in evaluating liquefaction potential by simplified prediction methods. 2) For upper and soft sand deposits with small N-value, liquefaction strengths estimated by Seed and Idriss's simplified method were lower than those by the cyclic triaxial test while those by Iwasaki & Tatsuoka's or Vs-method were not lower. 3) Simplified methods were inclined to overestimate liquefaction potential in comparison with the dynamic response analysis and the cyclic triaxial compression test Allowable depths of liquefaction(safety factor 1) were estimated to be 7-14m for 0.1 -0.2g of input maximum acceleration.

  • PDF

A Cross-Validation of SeismicVulnerability Assessment Model: Application to Earthquake of 9.12 Gyeongju and 2017 Pohang (지진 취약성 평가 모델 교차검증: 경주(2016)와 포항(2017) 지진을 대상으로)

  • Han, Jihye;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.649-655
    • /
    • 2021
  • This study purposes to cross-validate its performance by applying the optimal seismic vulnerability assessment model based on previous studies conducted in Gyeongju to other regions. The test area was Pohang City, the occurrence site for the 2017 Pohang Earthquake, and the dataset was built the same influencing factors and earthquake-damaged buildings as in the previous studies. The validation dataset was built via random sampling, and the prediction accuracy was derived by applying it to a model based on a random forest (RF) of Gyeongju. The accuracy of the model success and prediction in Gyeongju was 100% and 94.9%, respectively, and as a result of confirming the prediction accuracy by applying the Pohang validation dataset, it appeared as 70.4%.

Application of Vibration Prediction Method Using Response Spectrum with Amplification Factor (증폭계수를 이용한 진동 예측기법의 적용)

  • 심재수;황의승;김덕중;윤종오
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.4
    • /
    • pp.37-43
    • /
    • 1997
  • Damages and public complaints are increased due to construction noise and vibration from several sources. It is urgently needed to develop the easy and practical method to estimate the vibration effect. In this study, to predict the vibration effect, the method using the response spectrum with amplification factor concepts prroposed by Newmark and Hall is used. Also the applicability of the method is examined. Vibration measurement on subway structure, foundation and building structures are performed and the results show that the provided method is practical and can be used to predict the vibration effect.

  • PDF