• Title/Summary/Keyword: 지진파괴

Search Result 364, Processing Time 0.023 seconds

Analysis of Seismic Fragility Improvement Effect of an Isolated Rotational Equipment (면진장치를 설치한 회전기기의 지진취약도 개선효과 분석)

  • Kim, Min-Kyu;Ohtori, Yasuki;Choun, Young-Sun;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.6
    • /
    • pp.69-78
    • /
    • 2007
  • In this study, for the evaluation of seismic safety of the isolated Emergency Diesel Generator (EDG) System more quantitatively, the seismic fragility analysis method were proposed. Using the proposed method, seismic fragility analysis performed and a seismic risk of EDG system was present. The fragility analysis performed not for an existing EDG system but also for an isolated EDG system which increases the seismic capacity. At first, numerical models for existing and isolated EDG system were constructed and seismic response analysis performed according to input seismic waves and peak ground accelerations. An uncertainty factors and failure modes of both fixed and isolated EDG system were assumed for fragility analysis. The HCLPF values were evaluated for the compare the improvement effect using the isolation system. As a result, the isolation system can make better the seismic fragility of EDG system, but the failure of isolation system was govern the behavior of whole system.

A Study on Seismic Retrofit Design of the Stabilized Piles by 1g Shaking Table Tests and Pseudo-static Analysis (1g 진동대 실험 및 등가정적해석을 이용한 억지말뚝의 사면안정 내진보강 효과 연구)

  • Han, Jin-Tae;Cho, Jong-Suck;Yoo, Min-Taek;Lee, Seung-Hyun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.93-101
    • /
    • 2011
  • Korea has about 70% of its land classified as the mountain area, which has led to cut-slope being the result of substantial road and railway construction. However, there is currently a lack of research about the seismic retrofit design of a slope, even though many earthquakes have recently occurred at home and abroad. In this study, in order to investigate the stabilizing effect of piles against sliding during an earthquake, a series of 1 g shaking table tests and pseudo-static analyses were carried out. As a result, the stabilizing effect of piles against sliding during an earthquake was verified by the 1 g shaking table tests and the most effective result from the pseudo-static analyses was that the installation of the piles on the central part of the slope, where the failure surface included piles unlike the lower part and upper part of the slope. Furthermore, when the pile was installed on the central part of the slope, the change of the safety factor depending on the distance between the center of two piles was evaluated.

Seismic Performance Analysis of RC Piers with Lap-spliced Reinforced Steel and Differentiated Aspect Ratios (주철근 겹침이음 및 형상비에 따른 철근콘크리트 교각의 내진거동 분석)

  • Cho, Chang-Beck;Shin, Ho-Jin;Kwahk, Im-Jong;Chung, Young-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.5
    • /
    • pp.41-53
    • /
    • 2012
  • The objective of this study is to evaluate the seismic capacity of RC piers with small aspect ratios. Test specimens were selected from the prototype piers among existing national roadway bridges which are expected to fail in shear and/or complex shear-flexural mode. Two groups of full scale RC pier models were constructed with aspect ratios of 2.25 and 2.67. Quasi-static tests have been implemented to investigate the failure behavior of the RC piers in terms of the lap-spliced longitudinal reinforcing steel and the aspect ratio. It is confirmed that regarding its shear-flexural behavior, the pier is very sensitive to the aspect ratio or details. In the case of a test pier with highly lap-spliced longitudinal bars, the bond failure of lap-splice steels was the dominant cause of failure before the occurrence of flexure or shear-flexural failure, despite a slight change in the aspect ratio. Finally, based on the test results and analysis, this paper proposes formulas for the yielding and ultimate displacements of circular reinforced concrete bridge piers without seismic details. These formulas will be useful for the investigation and upgrade of the seismic capacity of bridge piers without seismic details.

Experimental Investigation of the Lateral Load Capacity and Strength Characteristics of a Steel Plate Concrete (SC) Shear Wall (비보강 강판콘크리트 전단벽의 횡하중 성능 및 강도특성에 대한 실험적 평가)

  • Cho, Sung-Gook;So, Gi-Hwan;Kim, Doo-Kie;Kwon, Min-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.5
    • /
    • pp.23-32
    • /
    • 2012
  • Research on steel plate concrete (SC) structures for the modularization of nuclear power plants have been performed recently in Korea. In this study, the seismic capacity and stiffness characteristics of unstiffened SC shear walls under the effects of earthquakes were investigated through static pushover tests. Failure modes, sectional strength, and stiffness characteristics of SC structures under lateral loads were inspected by analyzing the experimental results. The strengths obtained by the experiments were also compared with those derived by the design code of the SC structures. One of the main failures of unstiffened SC shear walls was found to be the type of bending shear failure due to the debonding of the steel plate at the concrete interface. The ductility capacity of SC structures was also confirmed to be improved, which is considered to be a confining effect on steel plates in the longitudinal behavior of SC structures.

Quantitative Damage Model of Steel Members under Severe Seismic Loading (강한 지진하중하에서 강부재의 정량적인 손상 모델)

  • Park, Yeon Soo;Park, Sun Joon
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.3 s.36
    • /
    • pp.339-353
    • /
    • 1998
  • In this paper, the previous damage models for structures and their components under seismic repeated loading were reviewed systematically. A failure criterion for steel members under severe cyclic excitations as in strong earthquakes was described. A new approach to seismic damage assessment for steel members was proposed. This method was based on a series of the experimental and numerical investigations for steel members under very low cyclic loading. In this study, very low cyclic loading means repetitive loading, 5 to 20 loading cycles, within the large plastic range. The proposed damage assessment method was focused on the local strain history at the cross-section of the most severe concentration of deformation.

  • PDF

A Study on the Risk Analysis of the RC Structure Subjected to Seismic Loading (철근콘크리트 구조물의 지진 위험성 분석에 관한 연구)

  • 이성로
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.5
    • /
    • pp.183-192
    • /
    • 1994
  • Seismic safety of RC structure can be evaluated by numerical analysis considering randomness of earthquake motion and hysteretic behavior of reinforced concrete, which is more rational than determirustic analysis. In the safety assessment of aseismatic structures by the deterministic theory, it is not easy to consider th effects of random variables but the reliability theory and random vibration theory are useful to assess seismic safety with considering random effects. This study aims at the evaluation of sesmic damage and risk of the RC frame structure by stochastic response analysis of hysteretic system and then the calculation stages of the prob ability of failure are presented.

Effects of the Recorded Earthquake Data on the Seismic Fragilities of Korean Nuclear Power Plant Structures (한반도 기록지진의 특성이 원자력발전소 구조물의 지진취약도에 미치는 영향 평가)

  • Joe, Yang-Hee;Cho, Sung-Gook
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.3
    • /
    • pp.321-331
    • /
    • 2003
  • Seismic fragility analysis (SFA) has been utilized to evaluate the actual seismic capacity of structure and equipment in nuclear power plants (NPP). This paper briefly introduces an improved method for evaluating seismic fragilities of components of NPP's in Korea. Engineering characteristics of small magnitude earthquake spectra recorded in the Korean peninsula during the last several years are also discussed in this paper. Some significant differences between the Newmark's spectra and the recorded spectra as a site-dependent spectra are assessed. Several comparative SFA's have been performed to evaluate the effects of the recorded earthquakes on the seismic capacities of Korean NPP structures. The results showed that SFA using the Newmark's spectra might over estimate the actual seismic capacities of Korean facilities.

Modeling of Concrete Damage Subjected to Repeated Loadings (반복하중에 의한 콘크리트 손상 모델링)

  • 정영수;김기봉
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.10a
    • /
    • pp.23-28
    • /
    • 1990
  • 지진하중에 의한 콘크리트의 손상 및 파괴의 적절한 평가를 위한 많은 연구가 수행되고 있지만 현재까지 손상을 당한 부재의 잔여강도를 예측할 수 있는 적절한 손상 모델이 없는 실정이다. 본 논문은 콘크리트의 손상에 관한 기본적인 현상들을 면밀히 조사 연구한 후 콘크리트의 low-cycle 피로현상을 해석모델링하여 반복하중 하에서의 손상모델을 제안하였다. 제안된 모델은 콘크리트가 파괴에 도달할 시 싸이클 수 대신에 부재의 흡수에너지 능력을 주요변수로 택하였다. 특히 본 손상모델으 정확성은 기 제안한바 있는 반복하중 작용시의 콘크리트 부재의 해석적인 이력모델[3]을 사용하여 예증하였다.

  • PDF

System-Level Seismic Fragility Evaluation of Bridge Considering Aging Effects (노후도를 고려한 교량의 시스템-수준 지진취약도 평가)

  • Kong, Sina;Moon, Jiho;Song, Jong-Keol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.3
    • /
    • pp.149-158
    • /
    • 2022
  • As a bridge ages, its mechanical properties and structural performance deteriorate, degrading its seismic performance during a strong earthquake. In this study, the aging of piers and bridge bearings was quantified in several stages and reflected in the analysis model, enabling the evaluation of the member-level seismic fragility of these bearings. Moreover, by assuming that the failure mechanism of a bridge system is a series system, a method for evaluating the system-level seismic fragility based on the member-level seismic fragility analysis result is formulated and proposed. For piers with rubber and lead-rubber bearings (members vulnerable to aging effects), five quantitative degrees of aging (0, 5, 10, 25, and 40%) are assumed to evaluate the member-level seismic fragility. Then, based on the result, the system-level seismic fragility evaluation was implemented. The pier rather than the bridge bearing is observed to have a dominant effect on the system-level seismic fragility. This means that the seismic fragility of more vulnerable structural members has a dominant influence on the seismic fragility of the entire bridge system.

Seismic Curvature Ductility of RC Bridge Piers with 2.5 Aspect Ratio (형상비 2.5의 RC 교각의 내진 곡률연성도)

  • Chung, Young-Soo;Park, Chang-Kyu;Lee, Eun-Hee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.1-12
    • /
    • 2004
  • Due to the 1989 Loma Prieta, 1995 Hyogoken Nambu earthquakes, etc, a number of bridge columns  were collapsed in flexure-shear failures as a consequence of the premature termination of the column longitudinal reinforcement. Nevertheless, previous researches for the performance of bridge columns were concentrated on the flexural failure mode. It is well understood that the seismic behaviour of RC bridge piers was dependent on the performance of the plastic hinge of RC bridge piers, the ductility of which was desirable to be computed on the basis of the curvature. Experimental investigation was made to evaluate the variation of the curvature of the plastic hinge  region for the seismic performance of earthquake-damaged RC columns in flexure-shear failure mode. Seven test specimens in the aspect ratio of 2.5 were made with test parameters: confinement ratios, lap splices, and retrofitting FRP materials. They were damaged under series of artificial earthquakes that could be compatible in Korean peninsula. Directly after the pseudo-dynamic test, damaged columns were retested under inelastic reversal cyclic loading under a constant axial load, $P=0.1f_{ck}A_g$. Residual seismic capacity of damaged specimens was evaluated by analzying the moment-curvature hysteresis and the curvature ductility. Test results show that the biggest curvature was developed around 15cm above the footing, which induced the column failure. It was observed that RC bridge specimens with lap-spliced longitudinal steels appeared to fail at low curvature ductility but significant improvement was made in the curvature ductility of RC specimens with FRP straps wrapped around the plastic hinge region. Based on the experimental variation of the curvature of RC specimens, new equivalent length of the plastic hinge region was proposed by considering the lateral confinement in this study. The analytical and experimental relationship between the displacement and the curvature ductility were compared based on this proposal, which gave excellent result.