• Title/Summary/Keyword: 지진지체구조 특성

Search Result 17, Processing Time 0.023 seconds

Source parameters for the December 13 1996 ML 4.5 Earthquake in Yeongwol, South Korea (1996년 12월 13일 ML 4.5 영월 지진의 지진원 상수)

  • Choi, Ho-Seon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.5
    • /
    • pp.23-29
    • /
    • 2009
  • On December 13, 1996, an earthquake with local magnitude (M$_L$) 4.5 occurred in the Yeongwol area of South Korea. The epicenter was 37.2545$^{\circ}$N and 128.7277$^{\circ}$E, which is located inside the Okcheon Fold Belt. The waveform inversion analysis was carried out to estimate source parameters of the event according to the filtering bandwidth of seismic data. Using 0.02$\sim$0.2 Hz filtering bandwidth, focal depth and seismic moment were estimated to be 6 km and 1.3$\times$10$^{16}$ N$\cdot$m, respectively. This seismic moment corresponds to the moment magnitude (M$_W$) 4.7. The focal mechanism by the waveform inversion and P wave first motion polarity analysis is a strike slip faulting including a small thrust component, and the direction of P-axis is ENE-WSW. The moment magnitude estimated by spectral analysis was 4.8, which is similar to that estimated by waveform inversion. Average stress drop was estimated to be 14.3 MPa.

Retrofit Prioritization of Highway Network considering Seismic Risk of System (지진 위험도를 고려한 도로 교통망의 내진보강 우선순위 결정)

  • Na, Ung-Jin;Park, Tae-Won;Shinozuka, Masanobu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.6
    • /
    • pp.47-53
    • /
    • 2008
  • This research focuses on the issue of seismic retrofit prioritization based on the Caltrans' highway network serving Los Angeles and Orange counties. Retrofit prioritization is one of most important problems in earthquake engineering, and it is a problem that most decision makers face in the process of resource allocation. This study demonstrates the methods of prioritized resource allocation in the process of retrofitting a regional highway network. For the criteria of a retrofit ranking, seismic vulnerability and the importance of network link are first introduced. Subsequently, link-based seismic retrofit cases are simulated, investigating the effects of the seismic retrofit in terms of seismic performance, such as driver's delay. In this study, probabilistic scenario earthquakes are used to perform a probabilistic seismic risk analysis. The results show that the retrofit prioritization can be differently defined and ranked depending on the stakeholders. This study provides general guidelines for prioritization strategy for the effective retrofitting of a highway network system.

An Analysis of Probabilistic Seismic Hazard in the Korean Peninsula - Probabilistic Peak Ground Acceleration (PGA) (한반도의 확률론적 지진위험도 분석 - 확률론적 최대지반가속도(PGA))

  • Kyung, Jai-Bok;Kim, Min-Ju;Lee, Sang-Jun;Kim, Jun-Kyung
    • Journal of the Korean earth science society
    • /
    • v.37 no.1
    • /
    • pp.52-61
    • /
    • 2016
  • The purpose of the study was to create a probabilistic seismic hazard map using the input data that reflected the seismo-tectonic characteristics of the Korean Peninsula by applying USGS program (Harmsen (2008). The program was partly modified for the purpose of this study. The uncertainty of input parameters given by specialists was reflected in calculating the seismic hazard values by logic tree method. The general pattern of PGA was quite sensitive and similar to the shape of areal source. The probabilistic seismic hazard map showed the contour distribution of peak acceleration (%g) with 10% probability of exceedance in 5, 10, 20, 50, 100, 250, and 500 years. The result showed that the peak ground acceleration (PGA) values of the northern peninsula were almost half values of the southern peninsula except Hwanghae province. The general trend of the hazard map extended in the direction of NW-SE from Whanghae province to south-eastern regions of the peninsula. The values in northern part of Kangwon province were relatively lower than other areas in the southern peninsula. The maps produced through this study are considered valuable in regulating the seismic safety of the major facilities in the Korean Peninsula.

Source Parameters for the 9 December 2000 $M_L$ 3.7 Offshore Yeongdeok Earthquake, South Korea (2000년 12월 9일 $M_L$ 3.7 영덕 해역 지진의 지진원 상수)

  • Choi, Ho-Seon
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.2
    • /
    • pp.137-143
    • /
    • 2010
  • An earthquake with local magnitude $(M_L)$ 3.7 on December 9, 2000 occurred offshore Yeongdeok area, South Korea. In case of applying Chang and Baag (2006) crustal velocity model, the epicenter is $36.4462^{\circ}N\;and\;129.9789^{\circ}E$, which belongs to the inside of the Korean Peninsula Continental Shelf. Although we use the modified model reducing crustal thickness of Chang and Baag (2006) model by 5 km considering the transition from continental crust to oceanic crust in the East Sea, the epicenter was little changed. We carried out the waveform inversion analysis to estimate focal depth and focal mechanism of this event. The focal depth is estimated to be 11 ~ 12 km. The seismic moment is estimated to be $1.0{\times}10^{15}N{\cdot}m$, and this value corresponds to the moment magnitude $(M_W)$ 3.9. The offshore Yeongdeok event including May 29, 2004 offshore Uljin one show typical thrust faulting, and the direction of P-axis is ESE-WNW. The moment magnitude estimated by the spectral analysis is 4.0, which is similar to that by the waveform inversion analysis. Average stress drop is estimated to be 3.4 MPa.

A Study on the Focal Mechanism of the Hongsung Earthquake from the P-Wave Polarity Distributions (초동극성분포를 이용한 홍성지진의 Focal Mechanism 연구)

  • 김준경
    • The Journal of Engineering Geology
    • /
    • v.1 no.1
    • /
    • pp.121-136
    • /
    • 1991
  • The focal mechanism of the Hongsung Earthquake (1978. Oct. 7, M$_L$=5.0, Latitude 36.62N, Longitude 1 26.67E) was evaulated using the polarity distribution of the P-Waveforms. Through the non-linear computer process, the compatibility of polarity distributions of the 9 P-Waveforms observed at teleseismic distances from the Hongsung Earthquake epicenter was investigated to those of the focal mechanism determined from the varying strike, dip and rake angles. The resultant values for the strike and dip angle of the principal fault plane, which apparently matches very well the sunface lineament of the Hongsung region, are determined to be about 247 degree and 78 degree with uncertainties, respectively. However, the rake angle of the focal mechanism has wide range of 40 degree to 160 degree, which is mainly due to the poor coverage of the azimuthal angle of the observed seismic stations. Due to the consistency of principal stress axes, the resultant focal mechanism could support the current stress regime of that region, which may be caused by subduction of the Pacific Plate under the Eurasia Plate along the Japan Trench. It also provides information of seismic source characteristics of the part of the Korean Peninsula for aseismic design criteria such as Site Specific Response Spectrum and Strong Ground Motion Time History for the nuclear power plants and related nuclear waste disposal facility sites.

  • PDF

A Study on Seismic Source and Propagntion Characteristics using a Series of 12 Fukuoka Earthquakes (후쿠오카 지역에서 발생한 12개 지진의 지진원 밑 지진파 감쇠값에 관한 연구)

  • Kim, Jun-Kyoung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.1 s.53
    • /
    • pp.89-97
    • /
    • 2007
  • Parameters including the seismic sources and the elastic wave propagation characteristics were analysed using the observed ground motions from 12 Fukuoka region earthquakes. The Levenberg-Marquardt algorithm was applied to invert all the variables non-linearly and simultaneously with S wave energy in fiequency domain. Average stress drop of 12 events and local attenuation parameter $\kappa$ under seismic stations were estimated to about 79.2-bar and 0.043 respectively. Regional attenuation parameter, Qo and ${\eta}$, were also estimated to be about 248.1 and 0.558 respectively. Low value of Qo seems to caused by inhomogeneous tectonic characteristics between Japan island and southern Korean peninsula. $\kappa$ values are much higher than that characterizing EUS (Eastern United States) region, and nearly similar to that of WUS (Western Waited States) region. If the informations on site specific amplification of all the seismic stations are known, $\kappa$ values can be estimated more precisely. All the values including the seismic sources and the site and crustal scale propagation characteristics can be used as seismic design parameters.

Basic Concepts and Geological Applications of LiDAR (LiDAR 기법의 기본원리와 지질학적 적용)

  • Kim, Hyun-Tae;Kim, Young-Seog;We, Kwang-Jae
    • The Journal of Engineering Geology
    • /
    • v.24 no.1
    • /
    • pp.123-135
    • /
    • 2014
  • Earthquakes can cause serious loss of life and significant property damage. Thus, the study of active faults is important in evaluating future fault activity and hazards caused by future earthquake events. Structural mapping and the tracing of active faults are the primary steps in studies of active faults. Until now, active faults in South Korea have been mapped using aerial photography, satellite images, and low-quality DEMs. Lineament analysis as a means of identifying active faults is relatively difficult in Korea due to geological characteristics (weak tectonic activity) and dense vegetation cover. In this paper, we introduce the basic concept of the LiDAR technique (a new prospective remote sensing method) and a data analysis method that can overcome these problems. This paper will contribute to a better understanding of the airborne LiDAR technique and its application to South Korea. Some preliminary results from Korean and USA LiDAR data show the usefulness of this technique for tracing lineaments, active faults, and terraces in South Korea.