• Title/Summary/Keyword: 지진재해도 곡선

Search Result 5, Processing Time 0.023 seconds

Comparison of Methods for the Analysis Percentile of Seismic Hazards (지진재해도의 백분위수 분석 방법 비교)

  • Rhee, Hyun-Me;Seo, Jung-Moon;Kim, Min-Kyu;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.43-51
    • /
    • 2011
  • Probabilistic seismic hazard analysis (PSHA), which can effectively apply inevitable uncertainties in seismic data, considers a number of seismotectonic models and attenuation equations. The calculated hazard by PSHA is generally a value dependent on peak ground acceleration (PGA) and expresses the value as an annual exceedance probability. To represent the uncertainty range of a hazard which has occurred using various seismic data, a hazard curve figure shows both a mean curve and percentile curves (15, 50, and 85). The percentile performs an important role in that it indicates the uncertainty range of the calculated hazard, could be calculated using various methods by the relation of the weight and hazard. This study using the weight accumulation method, the weighted hazard method, the maximum likelihood method, and the moment method, has calculated the percentile of the computed hazard by PSHA on the Shinuljin 1, 2 site. The calculated percentile using the weight accumulation method, the weighted hazard method, and the maximum likelihood method, have similar trends and represent the range of all computed hazards by PSHA. The calculated percentile using the moment method effectively showed the range of hazards at the source which includes a site. This study suggests the moment method as effective percentile calculation method considering the almost same mean hazard for the seismotectonic model and a source which includes a site.

Development of Ground Motion Response Spectrum for Seismic Risk Assessment of Low and Intermediate Level Radioactive Waste Repositories (중·저준위 방사성 폐기물 처분장의 지진위험도 평가를 위한 지반운동스펙트럼 산정)

  • Kim, Min-Kyu;Rhee, Hyun-Me;Lee, Kyoung-Mi
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.57-63
    • /
    • 2011
  • In this study, a ground motion response spectrum for the seismic risk assessment of low and intermediate level radioactive waste repositories was developed. For the development of the ground motion response spectrum, a probabilistic seismic hazard analysis (PSHA) was performed. Through the performance of a PSHA, a seismic hazard curve which was based on a seismic bed rock was developed. A uniform hazard spectrum was determined by using a developed seismic hazard curve. Artificial seismic motions were developed based on the uniform hazard spectrum. A seismic response analysis was performed on the developed artificial seismic motion. Finally, an evaluation response spectrum for the seismic risk assessment analysis of low and intermediate level radioactive waste repositories was developed.

Seismic Risk Assessment of Extradosed Bridges with Lead Rubber Bearings (LRB 면진장치가 설치된 엑스트라도즈드교의 지진위험도 평가)

  • Kim, Doo Kie;Seo, Hyeong Yeol;Yi, Jin-Hak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.155-162
    • /
    • 2006
  • This study presents the seismic risk assesment for an extradosed bridge with seismic isolators of lead rubber bearings(LRB). First, the seismic vulnerability of a structure and then the seismic hazard of the site are evaluated using earthquake data set and seismic hazard map in Korea, and then the seismic risk of the structure is assessed. The nonlinear seismic analyses are carried out to consider plastic hinges of bridge columns and nonlinear characteristics of soil foundation. The ductility demand is adopted to describe the nonlinear behavior of a column, and the moment-curvature curve of a column is assumed to be bilinear hysterestic. The fragility curves are represented as a log-normal distribution function for column damage, movement of superstructure, and cable yielding. And seismic hazard is estimated using the available seismic hazard maps. The results show that the effectiveness of the seismic isolators for the columns is more noticeable than those for cables and girders, in seismic isolated extradosed bridges under earthquakes.

Risk-Targeted Seismic Performance of Steel Ordinary Concentrically Braced Frames Considering Seismic Hazard (지진재해도를 고려한 철골 보통중심가새골조의 위험도기반 내진성능)

  • Shin, Dong-Hyeon;Hong, Suk-Jae;Kim, Hyung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.5
    • /
    • pp.371-380
    • /
    • 2017
  • The risk-targeted seismic design concept was first included in ASCE/SEI 7-10 to address problems related to the uniform-hazard based seismic concept that has been constructed without explicitly considering probabilistic uncertainties in the collapse capacities of structures. However, this concept is not yet reflected to the current Korean building code(KBC) because of insufficient strong earthquake data occurred at the Korean peninsula and little information on the collapse capacities of structures. This study evaluates the risk-targeted seismic performance of steel ordinary concentrically braced frames(OCBFs). To do this, the collapse capacities of prototype steel OCBFs are assessed with various analysis parameters including building locations, building heights and soil conditions. The seismic hazard curves are developed using an empirical spectral shape prediction model that is capable of reflecting the characteristics of earthquake records. The collapse probabilities of the prototype steel OCBFs located at the Korean major cities are then evaluated using the risk integral concept. As a result, analysis parameters considerably influence the collapse probabilities of steel OCBFs. The collapse probabilities of taller steel OCBFs exceed the target seismic risk of 1 percent in 50 years, which the introduction of the height limitation of steel OCBFs into the future KBC should be considered.

Effect of Evaluation Response Spectrum on the Seismic Risk of Structure (평가용 스펙트럼이 구조물의 지진리스크에 미치는 영향)

  • Kim, Min-Kyu;Choi, In-Ki
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.6
    • /
    • pp.39-46
    • /
    • 2009
  • The selection of an evaluation response spectrum can have a significant effect on the seismic fragility evaluation of a structure. A method for modifying the seismic fragility parameters that are calculated based on the design spectrum is described in this study. The modification factor is used to modify the original fragility parameters. The HCLPF (High Confidence of Low Probability of Failure) acceleration levels of the electric system using previous design spectrum and uniform hazard spectrum (UHS) were compared. Finally, seismic risk analyses were performed according to a uniform hazard spectrum. From the results, it was concluded that based on the design spectrum, seismic risk for the electric system might be underestimated.