• Title/Summary/Keyword: 지진응답 개선

Search Result 76, Processing Time 0.019 seconds

Vibration Characteristics Evaluation According to Natural Periods of Structures and Location of a Sky-bridge (구조물의 고유진동주기 및 스카이브릿지 설치위치에 따른 진동특성평가)

  • Kim, Hyun-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.6
    • /
    • pp.3068-3073
    • /
    • 2013
  • Recently, studies of vibration control performance improvement of tall buildings connected by a sky-bridge have been conducted. In this study, the effect of difference of natural vibration periods of two buildings and install location of a sky-bridge on vibration control performance has been investigated. To this end, 40-story and 50-story building structures were selected as example structures. Analytical models were developed by varying the natural period difference ratio from 1.0 to 1.5. Artificial earthquake load based on KBC2009 was used as an excitation for time history analyses. Based on numerical simulation results, it has been shown that control performance for displacement and velocity of tall buildings connected by a sky-bridge is improved as the difference of natural periods of two buildings increases and the linked story becomes higher. However, in the case of acceleration response, it shows a counter trend compared to displacement and velocity responses.

Fuzzy Control of Smart Base Isolation System using Genetic Algorithm (유전자알고리즘을 이용한 스마트 면진시스템의 퍼지제어)

  • Kim, Hyun-Su;Roschke, P.N.
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.2 s.42
    • /
    • pp.37-46
    • /
    • 2005
  • To date, many viable smart base isolation systems have been proposed and investigated. In this study, a novel friction pendulum system (FPS) and an MR damper are employed as the isolator and supplemental damping device, respectively, of the smart base isolation system. A fuzzy logic controller (FLC) is used to modulate the MR damper because the FLC has an inherent robustness and ability to handle non linearities and uncertainties. A genetic algorithm (GA) is used for optimization of the FLC. The main purpose of employing a GA is to determine appropriate fuzzy control rules as well to adjust parameters of the membership functions. To this end, a GA with a local improvement mechanism is applied. This method is efficient in improving local portions of chromosomes. Neuro fuzzy models are used to represent dynamic behavior of the MR damper and FPS. Effectiveness of the proposed method for optimal design of the FLC is judged based on computed responses to several historical earthquakes. It has been shown that the proposed method can find optimal fuzzy rules and the GA optimized FLC outperforms not only a passive control strategy but also a human designed FLC and a conventional semi active control algorithm.

Multi-DOF Real-time Hybrid Dynamic Test of a Steel Frame Structure (강 뼈대 구조물의 다자유도 실시간 하이브리드 동적 실험)

  • Kim, Sehoon;Na, Okpin;Kim, Sungil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.443-453
    • /
    • 2013
  • The hybrid test is one of the most advanced test methods to predict the structural dynamic behavior with the interaction between a physical substructure and a numerical modeling in the hybrid control system. The purpose of this study is to perform the multi-directional dynamic test of a steel frame structure with the real-time hybrid system and to evaluate the validation of the results. In this study, FEAPH, nonlinear finite element analysis program for hybrid only, was developed and the hybrid control system was optimized. The inefficient computational time was improved with a fixed number iteration method and parallel computational techniques used in FEAPH. Furthermore, the previously used data communication method and the interface between a substructure and an analysis program were simplified in the control system. As the results, the total processing time in real-time hybrid test was shortened up to 10 times of actual measured seismic period. In order to verify the accuracy and validation of the hybrid system, the linear and nonlinear dynamic tests with a steel framed structure were carried out so that the trend of displacement responses was almost in accord with the numerical results. However, the maximum displacement responses had somewhat differences due to the analysis errors in material nonlinearities and the occurrence of permanent displacements. Therefore, if the proper material model and numerical algorithms are developed, the real-time hybrid system could be used to evaluate the structural dynamic behavior and would be an effective testing method as a substitute for a shaking table test.

Correction of Accelerogram in Frequency Domain (주파수영역에서의 가속도 기록 보정)

  • Park, Chang Ho;Lee, Dong Guen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4
    • /
    • pp.71-79
    • /
    • 1992
  • In general, the accelerogram of earthquake ground motion or the accelerogram obtained from dynamic tests contain various errors. In these errors of the accelerograms, there are instrumental errors(magnitude and phase distortion) due to the response characteristics of accelerometer and the digitizing error concentrated in low and high frequency components and random errors. Then, these errors may be detrimental to the results of data processing and dynamic analysis. An efficient method which can correct the errors of the accelerogram is proposed in this study. The correction of errors can be accomplished through four steps as followes ; 1) using an interpolation method a data form appropriate to the error correction is prepared, 2) low and high frequency errors of the accelerogram are removed by band-pass filter between prescribed frequency limits, 3) instrumental errors are corrected using dynamic equilibrium equation of the accelerometer, 4) velocity and displacement are obtained by integrating corrected accelerogram. Presently, infinite impulse response(IIR) filter and finite impulse response (FIR) filter are generally used as band-pass filter. In the proposed error correction procedure, the deficiencies of FIR filter and IIR filter are reduced and, using the properties of the differentiation and the integration of Fourier transform, the accuracy of instrument correction and integration is improved.

  • PDF

Robust Analysis of a μ-Controller for a Cable-Stayed Bridge with Various Uncertainties (사장교에서 다양한 불확실성에 대한 μ-제어기의 강인성 해석)

  • Park, Kyu Sik;Spencer, B.F.Jr.;Kim, Chun Ho;Lee, In Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5A
    • /
    • pp.849-859
    • /
    • 2006
  • This paper presents an extensive robust analysis of a ${\mu}$-controller in the hybrid system for various uncertainties using the benchmark cable-stayed bridge. The overall system robustness may be deteriorated by introducing active devices and the active controller may cause instability due to small margins. Therefore, a ${\mu}$-synthesis method that simultaneously guarantees the performance and stability of the closed-loop system (robust performance) with uncertainties is used for active devices to enhance the robustness in company with the inherent reliability of passive devices. The robustness of the ${\mu}$-synthesis method is investigated with respect to the additional mass on the deck, structural stiffness matrix perturbation, time delay of actuator, and combinations thereof. Numerical simulation results show that the proposed control system has the good robustness without loss of control performances with respect to various uncertainties under earthquakes considered in this study. Furthermore, the control system robustness is more affected by the perturbation of structural stiffness matrix than others considered in this study. Therefore, the hybrid system controlled by a ${\mu}$-synthesis method could be proposed as an improved control strategy for a seismically excited cable-stayed bridge containing many uncertainties.

Development of Damage Evaluation Technology Considering Variability for Cable Damage Detection of Cable-Stayed Bridges (사장교의 케이블 손상 검출을 위한 변동성이 고려된 손상평가 기술 개발)

  • Ko, Byeong-Chan;Heo, Gwang-Hee;Park, Chae-Rin;Seo, Young-Deuk;Kim, Chung-Gil
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.77-84
    • /
    • 2020
  • In this paper, we developed a damage evaluation technique that can determine the damage location of a long-sized structure such as a cable-stayed bridge, and verified the performance of the developed technique through experiments. The damage assessment method aims to extract data that can evaluate the damage of the structure without the undamage data and can determine the damage location only by analyzing the response data of the structure. To complete this goal, we developed a damage assessment technique that considers variability based on the IMD theory, which is a statistical pattern recognition technique, to identify the damage location. To complete this goal, we developed a damage assessment technique that considers variability based on the IMD theory, which is a statistical pattern recognition technique, to identify the damage location. To evaluate the performance of the developed technique experimentally, cable damage experiments were conducted on model cable-stayed bridges. As a result, the damage assessment method considering variability automatically outputs the damageless data according to external force, and it is confirmed that the performance of extracting information that can determine the damage location of the cable through the analysis of the outputted damageless data and the measured damage data is shown.