• Title/Summary/Keyword: 지진음

Search Result 26, Processing Time 0.023 seconds

Analyzing characteristics of Natural Seismic Sounds and Artificial Seismic Sounds by using Spectrum Gradient (스펙트럼 기울기를 이용한 자연지진음과 인공지진음 특성 분석)

  • Yoon, Sang-Hoon;Bae, Myung-Jin
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.1
    • /
    • pp.79-86
    • /
    • 2009
  • This paper proposed an algorithm for extracting spectrum gradient parameter to analyze the characteristics of natural seismic sounds and artificial seismic sounds. The experiment was performed in various area to raise the reliability. The characteristics of natural seismic sounds and artificial seismic sounds were analyzed by extracting gradient indexes of artificial seismic sounds and natural seismic sounds from the data of experiment by using the proposed algorithm. As a result of the experiment and the analysis, gradient indexes of natural seismic sounds were higher than that of artificial seismic sounds because natural seismic sounds had higher attenuation at high-frequency than artificial seismic sounds did and natural seismic sounds were concentrated in low-frequency band.

Discrimination Between Natural and Artificial Seismic Sounds by Using 20 MSVQ Algorithm (20 MSVQ 알고리즘을 이용한 자연 및 인공 지진음 식별)

  • Yoon, Sang-Hoon;Song, Young-Hwan;Bae, Myung-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.251-259
    • /
    • 2009
  • This paper proposes an identification technique to discriminate natural and artificial seismic sounds by using the 20 MSVQ algorithm with the data measured by using a hydrophone. Spectrum band energy and MFCC were used as representative parameters for sake of discriminating natural and artificial seismic sounds, and the orders of characterized parameters were determined through experiments. As a result of using 20 MSVQ algorithm with the 2 characterized parameters, MFCC had 99.9% and the spectrum energy parameter had 83.9% percent of success. It was verified that it is extremely accurate when seismic sounds were discriminated by using the method suggested by this paper.

Monitoring Technique using Acoustic Emission and Microseismic Event (AE와 MS 이벤트를 이용한 계측기술)

  • Cheon, Dae-Sung;Jung, Yong-Bok;Park, Chul-Whan;Synn, Joong-Ho;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2008
  • Acoustic emission (AE) and Microseimsic (MS) activities are law-energy seismic events associated with a sudden inelastic deformation such as the sudden movement of existing fractures, the generation of new fractures or the propagation of fractures. These events rapidly increase before major failure and happen within a given rock volume and radiate detectable seismic waves. The main difference between AE and MS signals is that the seismic motion frequencies of AE signals are higher than those of MS signals. As the failure of geotechnical structures usually happens as a high velocity and small displacement, it is nat easy ta determine the precursor and initiation stress level of failure in displacement detection method. To overcame this problem, AE/MS techniques far detection of structure failure and damage have recently adapt in civil engineering. This study deal with the basic theory of AE/MS and state of arts in monitoring technique using AE/MS.

Artificial blasts discrimination by using seismo-acoustic data in 2002 (지진-공중음과 자료를 이용한 2002천도 인공발파 식별)

  • 제일영;전정수;이희일;신인철
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.38-44
    • /
    • 2003
  • Artificial blasts, defined as seismo-acoustic events, were discriminated from natural earthquakes in the Korean Peninsula by the seismo-acoustic analysis. Total 197 seismo-acoustic events corresponding to 9 percent of seismic events in 2002 were analyzed and classified as artificial surface blasts. Events distribution pattern of the seismo-acoustic events in 2002 was similar to the previous result in 1999-2001, except for two regions. Newly determined seismo-acoustic events were added to the previous artificial blast database. To extend infrasound detection capability, new small-scale infrasound array(TJIAR) was installed in KIGAM. Preliminary analysis for the small array was conducted to discriminate artificial blasts in the southwestern part of the Korean Peninsula. The small array discriminated S seismo-acoustic events during short period analysis. And two infrasound arrays(TJIAR and CHNAR) were used to determine approximate sound source location by cross bearing method.

  • PDF

A study on terminological definition of tsunami in Korean (Tsunami (津波)의 한글표현에 대한 소고)

  • Jung, Taehwa;Son, Sangyoung
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.5
    • /
    • pp.363-371
    • /
    • 2023
  • In this study, the validity of the Korean expression for tsunami will be examined and a method to use it correctly will be proposed. First, we will review the scientific definition of the tsunami and the origin of the tsunami expressed in various languages. Based on this review, after reviewing whether the Korean expression 'Jijinhaeil', which is currently used representatively in Korea, a reasonable method that can be used appropriately will be proposed. In conclusion, it is suggested that the Korean pronunciation of tsunami should be used in a uniform manner as in the case of English and other languages.

Particle Based Discrete Element Modeling of Hydraulic Stimulation of Geothermal Reservoirs, Induced Seismicity and Fault Zone Deformation (수리자극에 의한 지열저류층에서의 유도지진과 단층대의 변형에 관한 입자기반 개별요소법 모델링 연구)

  • Yoon, Jeoung Seok;Hakimhashemi, Amir;Zang, Arno;Zimmermann, Gunter
    • Tunnel and Underground Space
    • /
    • v.23 no.6
    • /
    • pp.493-505
    • /
    • 2013
  • This numerical study investigates seismicity and fault slip induced by fluid injection in deep geothermal reservoir with pre-existing fractures and fault. Particle Flow Code 2D is used with additionally implemented hydro-mechanical coupled fluid flow algorithm and acoustic emission moment tensor inversion algorithm. The output of the model includes spatio-temporal evolution of induced seismicity (hypocenter locations and magnitudes) and fault deformation (failure and slip) in relation to fluid pressure distribution. The model is applied to a case of fluid injection with constant rates changing in three steps using different fluid characters, i.e. the viscosity, and different injection locations. In fractured reservoir, spatio-temporal distribution of the induced seismicity differs significantly depending on the viscosity of the fracturing fluid. In a fractured reservoir, injection of low viscosity fluid results in larger volume of induced seismicity cloud as the fluid can migrate easily to the reservoir and cause large number and magnitude of induced seismicity in the post-shut-in period. In a faulted reservoir, fault deformation (co-seismic failure and aseismic slip) can occur by a small perturbation of fracturing fluid (<0.1 MPa) can be induced when the injection location is set close to the fault. The presented numerical model technique can practically be used in geothermal industry to predict the induced seismicity pattern and magnitude distribution resulting from hydraulic stimulation of geothermal reservoirs prior to actual injection operation.

Investigation of Adaptability of Smart Base Isolation System for Spacial Structures in Regions of Low-to-Moderate Seismicity (중약진지역 대공간 구조물에 대한 스마트 면진시스템의 적용성 검토)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.4
    • /
    • pp.109-119
    • /
    • 2011
  • To date, a smart base isolation system has been developed in high seismicity region such as Japan, USA etc. Smart base isolation systems developed for structures in high seismicity region cannot directly applied to structures in regions of low-to-moderate seismicity such as Korea. Therefore, problems that occur by applying the smart base isolation system developed for the structures in high seismicity region to the structures in regions of low-to-moderate seismicity have been investigated in this study. To this end, a spacial arch structure was used as an example structure and MR dampers and low damping elastomeric bearings were used to compose a smart base isolation system. Artificial earthquakes were used for ground motions in regions of high and low-to-moderate seismicity. Based on numerical simulation results, it has been known that the capacity of smart base isolation system for the regions of low-to-moderate seismicity should be carefully designed because the base isolation effects of the smart base isolation system for high seismicity region is deteriorated when it is applied to the structures in regions of low-to-moderate seismicity.

Equivalent SDF Systems Representing Steel Moment Resisting Frames (철골 모멘트 골조의 지진해석을 위한 등가 단자유도시스템)

  • Han, Sang-Whan;Moon, Ki-Hoon;Kim, Jin-Seon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.3
    • /
    • pp.21-28
    • /
    • 2008
  • To evaluate the seismic performance of multi-degree of freedom(MDF) systems, repeated nonlinear response history analyses are often conducted, which require extensive computational efforts. To reduce the amount of computation required, equivalent single degree of freedom(SDF) systems representing complex multi-degree of freedom(MDF) systems have been developed. For the equivalent SDF systems, bilinear models and trilinear models have been most commonly used. In these models, the P-$\Delta$ effect due to gravity loads during earthquakes can be accounted for by assigning negative stiffness after elastic range. This study evaluates the adequacy of equivalent SDF systems having these hysteretic models to predict the actual response of steel moment resisting frames(SMRF). For this purpose, this study conducts cyclic pushover analysis, nonlinear time history analysis and incremental dynamic analysis(IDA) for SAC-Los Angeles 9-story buildings using nonlinear MDF models(exact) and equivalent SDF models(approximate). In addition, this study considers the strength limited model.

Dynamic Instability of Strength-Limited Bilinear SDF Systems (강도한계 이선형 단자유도 시스템의 동적 불안정)

  • Han, Sang-Whan;Kim, Jong-Bo;Bae, Mun-Su;Moon, Ki-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.5
    • /
    • pp.23-29
    • /
    • 2008
  • This study investigates the dynamic instability of strength-limited bilinear single degree of freedom (SDF) systems under seismic excitation. The strength-limited bilinear hysteretic model best replicates the hysteretic behavior of the steel moment resisting frames. To estimate the dynamic instability of SDF systems, the collapse strength ratio is used, which is the yield-strength reduction factor when collapse occurs. Statistical studies are carried out to estimate median collapse strength ratios and those dispersions of strength-limited bilinear SDF systems with given natural periods, hardening stiffness ratios, post-capping stiffness ratios, ductility and damping ratios ranging from 2 to 20% subjected to 240 earthquake ground motions recorded on stiff soil sites. Equations to calculate median and standard deviation of collapse strength ratios in strength-limited bilinear SDF systems are obtained through nonlinear regression analysis. By using the proposed equations, this study estimated the probabilistic distribution of collapse strength ratios, and compared this with the exact values from which the accuracy of the proposed equations was verified.

Experimental Curvature Analysis of Reinforced Concrete Piers with Lap-Spliced Longitudinal Steels subjected to Seismic Loading (지진하중을 받는 주철근 겹침이음된 철근콘크리트 교각의 곡률분석)

  • Chung, Young-Soo;Park, Chang-Kyu;Song, Hee-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.1 s.47
    • /
    • pp.41-49
    • /
    • 2006
  • Through the 1982 Urahawa-ohi and the 1995 Kobe earthquakes, a number of bridge columns were observed to develop a flexural-shear failure due to the bond slip as a consequence of premature termination of the column longitudinal reinforcement. Because the seismic behavior of RC bridge piers is largely dependent on the performance of the plastic hinge legion of RC bridge piers, it is desirable that the seismic capacity of RC bridge pier is to evaluate as a curvature ductility. The provision for the lap splice of longitudinal steel was not specified in KHBDS(Korea Highway Bridge Design Specification) before the implementation of 1992 seismic design code, but the lap splice of not more than 50%, longitudinal reinforcement was newly allowed in the 2005 version of the KHBDS. The objective of this research is to investigate the distribution and ductility of the curvature of RC bridge column with the lap splice of longitudinal reinforcement in the plastic hinge legion. Six (6) specimens were made in 600 mm diameter with an aspect ratio of 2.5 or 3.5. These piers were cyclically subjected to the quasi-static loads with the uniform axial load of $P=0.1f_{ck}A_g$. According to the slip failure of longitudinal steels of the lap spliced specimen by cyclic loads, the curvatures of the lower and upper parts of the lap spliced region were bigger and smaller than the corresponding paris of the specimen without a lap splice, respectively. Therefore, the damage of the lap spliced test column was concentrated almost on the lower part of the lap spliced region, that appeared io be failed in flexure.