• Title/Summary/Keyword: 지진손상

Search Result 378, Processing Time 0.028 seconds

Retrofit Measures Based on Seismic Retrofit Priority of Existing Bridges (교량의 내진보강 우선순위를 이용한 합리적인 보강방안 선정기법)

  • Lee, Sang-Woo;Kim, Sang-Hyo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.77-86
    • /
    • 2004
  • The retrofit priority of existing and retrofitted bridges is examined and compared to determine effectively the seismic retrofit method of bridges. For the retrofit prioritization of bridges a quantitative procedure is proposed firstly based on seismic damage probabilities and total failure cost due to the damage of seismic vulnerable components. Using the proposed procedure, the retrofit priority of four typical girder-type bridges is determined. In addition, the ranking indices of bridges retrofitted by steel jackets and cable restrainers are revaluated for comparing with the results of existing bridges. Application of retrofitting method can considerably decreases damage possibilities of retrofitted components but may increases those of adjacent vulnerable components. Therefore, the seismic retrofitting effects based on the global motions of existing and retrofitted bridges should be examined to determine efficiently the retrofitting method. For evaluating the retrofitting effects the ranking indices obtained from the proposed procedure is found to be utilized effectively.

Effect of Velocity-Pulse-Like Ground Motions on Seismic Fragility of Bridges (교량의 지진취약도에 대한 속도 펄스를 가진 지반운동의 영향)

  • Yeeun Kim;Sina Kong;Sinith Kung;Jiho Moon;Jong-Keol Song
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.2
    • /
    • pp.119-131
    • /
    • 2024
  • Pulse-like ground motion can cause greater damage to structures than nonpulse-like ground motion. Currently, much research is being conducted to determine the presence or absence of velocity pulses and to quantify them from seismic-acceleration records. Existing ground motion is divided into far-field (FF) and near-fault ground motion, based on the distance of the measurement point from the fault. Near-fault ground motion is further classified into near-fault pulse-like (NFP) and near-fault nonpulse-like (NFNP) ground motion by quantifying the presence or absence of velocity pulses. For each ground motion group, 40 FF, 40 NFP, and 40 NFNP ground motions are selected; thus, 120 ground motions are used in the seismic analysis to assess the seismic fragility of sample bridges. Probabilistic seismic demand models (PSDMs) are created by evaluating the seismic responses of two types of sample bridges with lead-rubber and elastomeric rubber bearings using three groups of ground motions. Seismic fragility analysis is performed using the PSDM, and from these results, the effect of the presence or absence of seismic velocity pulses on the seismic fragility is evaluated. From the comparison results of the seismic fragility curve, the seismic fragility of NFP ground motion appears to be approximately three to five times greater than that of NFNP ground motion, according to the presence or absence of a velocity pulse of seismic waves. This means that the damage to the bridge is greater in the case of NFP ground motion than that in the case of NFNP ground motion.

Seismic Fragility Evaluation for Railway Bridge Structures using Results of a Safety Factor (철도교의 지진취약도 함수 도출을 위한 안전율평가 결과 이용)

  • Kim, Min-Kyu;Hahm, Dae-Gi;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.57-65
    • /
    • 2009
  • This study is an evaluation of seismic fragility function using the HAZUS program for railway bridge systems, based on the results of previous research on seismic safety factor. First, a fragility function for each of the bridge members was evaluated according to the damage criteria and failure mode. Subsequently, bridge system fragility was evaluated using a fault tree to describe damage status. Finally, a fragility evaluation method for the bridge system was developed, based on the safety factor derived from the previous research.

Fragility Curve of Steel Box Bridge Using RFPB Bearing (RFPB 받침을 사용한 Steel Box 교량의 손상도 곡선)

  • Lee, Jongheon;Seo, Sangmok;Kim, Woonhak
    • Journal of the Society of Disaster Information
    • /
    • v.7 no.3
    • /
    • pp.171-180
    • /
    • 2011
  • As a great earthquake hit east Japan recently, the interests for the necessity of earthquake resistant design and earthquake resistance ability of existent structures are much increased. The damage or collapse of a bridge, as a social overhead capital structure affects socially and economically. Thus the evaluation of earthquake resistance ability of these structures is very important. The reviewing methods for earthquake resistance ability are mostly deterministic. Although the deterministic methods are fit for the evaluation of safety of each member, they are not practical for the whole structure. For the evaluation of structural safety for earthquake, the method for the evaluation of fragility or damage is needed for some stages of damage. In this paper, fragility curves of steel box bridge using RFPB bearing for PGA, PGV, SA, SV, SI are constructed, and these are compared with the cases of FPB.

A Study on Damage Process Analysis for Steel Pier Subjected to Seismic Excitation (강한 지진 하중하에서 강재 교각의 손상 거동 연구)

  • Park, Yeon Soo;Park, Keun Koo;Park, Sun Joon
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.3 s.46
    • /
    • pp.251-258
    • /
    • 2000
  • Based on the numerical investigations using steel bridge pier subjected to strong seismic excitations a new approach to seismic damage assessment for steel structures and their members has been proposed in conjunction with the suggested definition of failure state. The relevant failure form of the steel pier is evaluated. It is revealed that when a seismic load has a short period, the failure of global buckling beyond the allowable displacement is more dominant than that by that of the local buckling caused by the accumulation of plastic strain. When a seismic load is not beyond this certain part, but repeats within the range of where a plastic deformation occurs, the plastic strain is accumulated on the partial element of bottom edge of steel pier and the failure occurs by the local buckling from the accumulated plastic local strain.

  • PDF

Tsunami Fragility Evaluation for Offsite Transformer in Nuclear Power Plants (지진해일에 의한 원자력발전소 소외변압기의 취약도 평가)

  • Kim, Min Kyu;Choi, In-Kil;Kang, Keum Seok
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.1
    • /
    • pp.18-24
    • /
    • 2010
  • In this study, a tsunami fragility methodology was determined for a probabilistic safety assessment(PSA) induced tsunami event in Nuclear Power Plant(NPP) site. For this purpose, a fragility evaluation method was presented using previous external PSA method. Failure mode and failure criteria about major safety related equipments and structures were determined. Finally, a tsunami fragility assessment was performed for offsite transformer in NPP site. For the fragility evaluation, structural failure like overturning and sliding and functional failure induced by inundation. Through this study, it can be concluded that a functional failure according to inundation height was governed total probability of failure of offsite transformer in NPP.

Development of System-level Seismic Fragility Methodology for Probabilistic Seismic Performance Evaluation of Steel Composite Box Girder Bridges (강상자형 합성거더교의 확률론적 내진성능 평가를 위한 시스템-수준 지진취약도 방법의 개발)

  • Sina Kong;Yeeun Kim;Jiho Moon;Jong-Keol Song
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.3
    • /
    • pp.173-184
    • /
    • 2023
  • Presently, the general seismic fragility evaluation method for a bridge system composed of member elements with different nonlinear behaviors against strong earthquakes has been to evaluate at the element-level. This study aims to develop a system-level seismic fragility evaluation method that represents a structural system. Because the seismic behavior of bridges is generally divided into transverse and longitudinal directions, this study evaluated the system-level seismic fragility in both directions separately. The element-level seismic fragility evaluation in the longitudinal direction was performed for piers, bridge bearings, pounding, abutments, and unseating. Because pounding, abutment, and unseating do not affect the transverse directional damages, the element-level seismic fragility evaluation was limited to piers and bridge bearings. Seismic analysis using nonlinear models of various structural members was performed using the OpenSEES program. System-level seismic fragility was evaluated assuming that damage between element-levels was serially connected. Pier damage was identified to have a dominant effect on system-level seismic fragility than other element-level damages. In other words, the most vulnerable element-level seismic fragility has the most dominant effect on the system-level seismic fragility.

Fragility Analysis of RC Moment Resisting Framewith Masonry Infill Walls (비내력벽을 가진 RC모멘트저항골조의 취약도 해석)

  • Ko, Hyun;Park, Yong-Koo;Choi, Byeong-Tae;Kim, Min-Gyun;Lee, Ui-Hyun;Lee, Dong-Guen
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.442-445
    • /
    • 2009
  • 지진에 대한 건축물의 확률적 성능평가에 대해서는 지진하중에 대한 건축물의 손상확률 또는 파괴확률을 나타내는 지진취약도 함수를 작성하여 대상 건축물에 대한 지진위험도를 평가하는 방법을 이용하고 있으며 이에 대한 많은 연구가 이루어지고 있다. 본 연구에서는 지진하중과 구조물 재료특성의 불확실성을 고려하고 대상 건축물의 지진취약도 해석을 통하여 비내력벽의 유무에 따른 건축물의 지진거동 및 내진성능을 평가하였다. 비내력벽을 보편화된 모형화 방법인 등가의 대각 압축 스트럿으로 고려하여 비내력벽의 유무에 따른 저층 철근콘크리트 건축물을 모형화하였으며 지진하중의 강도는 유효최대지반가속도를 이용하여 각 건축물에 대하여 지진취약도를 작성하였다. 취약도해석 결과로 연약층을 가지고 있는 건축물의 경우는 손상확률이 골조만 있는 경우보다 크며 동일한 해석모델의 경우에도 해석방법에 따라서 취약도 곡선의 형태가 다름을 알 수 있었다.

  • PDF

Loss Estimation of Steel Pipeline Damage in Los Angeles Using GIS (GIS를 이용한 로스엔젤레스에 매설된 강관 손상 평가)

  • Jeon, Sang-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.2
    • /
    • pp.47-58
    • /
    • 2004
  • Steel Pipelines were located in hillside and mountain areas where landslides occurred during the Northridge earthquake. This paper describes the investigations that were performed to identify and locate the different types of steel pipeline construction in the system using GIS (Geographical Information System). The paper explores the damage correlations of steel pipelines with PGV (peak ground velocity) and investigates the areas subjected to the landslide effects during the Northridge earthquake. One noticeable finding is that the repair rates for steel distribution pipelines after the Northridge earthquake are higher than those of CI (cast iron) pipelines. The relatively high susceptibility of steel piping to damage during the Northridge earthquake may be explained in part by utility practices, such as using steel pipe for the highest internal pressures, and increased susceptibility to corrosion also appears to play a role in steel pipeline performance.

Seismic Risk Assessment of Bridges Using Fragility Analysis (지진취약도분석을 통한 교량의 지진위험도 평가)

  • Yi, Jin-Hak;Youn, Jin-Yeong;Yun, Chung-Bang
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.6 s.40
    • /
    • pp.31-43
    • /
    • 2004
  • Seismic risk assessment of bridge is presented using fragility curves which represent the probability of damage of a structure virsus the peak ground acceleration. In theseismic fragility analysis, the structural damage is defined using the rotational ductility at the base of the bridge pier, which is obtained through nonlinear dynamic analysis for various input earthquakes. For the assessment of seismic risk of bridge, peak ground accelerations are obatined for various return periods from the seismic hazard map of Korea, which enables to calculate the probability density function of peak ground acceleration. Combining the probability density function of peak ground acceleration and the seismic fragility analysis, seismic risk assessment is performed. In this study, seismic fragility analysis is developed as a function of not the surface motion which the bridge actually suffers, but the rock outcrop motion which the aseismic design code is defined on, so that further analysis for the seismic hazard assessment may become available. Besides, the effects of the friction pot bearings and the friction pendulum bearings on the seismic fragility and risk analysis are examined. Lastly, three regions in Korea are considered and compared in the seismic risk assessment.