• Title/Summary/Keyword: 지진설계

Search Result 1,401, Processing Time 0.024 seconds

Seismic Fragility of Underground Utility Tunnels (지하 공동구 시설물의 지진취약도 분석)

  • Lee, Deuk-Bok;Lee, Chang-Soo;Shin, Dea-Sub
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.5
    • /
    • pp.413-419
    • /
    • 2016
  • Damage of infrastructures by an earthquake causes the secondary damage through the world at large more than the damage of the structures themselves. Amomg them, underground utility tunnel structures comes under the special life line: communication, gas, electricity and etc. and it has a need to evaluate its fragility to an earthquake exactly. Therefore, the destruction ability according to peak ground acceleration of earthquakes for the underground utility tunnels is evaluated in this paper. As an input ground motion for evaluating seismic fragilities, real earthquakes and artificial seismic waves which could be generated in the Korean peninsula are used. And as a seismic analysis method, response displacement method and time history analyzing method are used. An limit state which determines whether destruction is based on the bending moment and shear deformation. A method used to deduct seismic fragility curve is method of maximum likelihood and the distribution function is assumed to the log normal distribution. It could evaluate the damage of underground utility tunnels to an earthquake and could be applied as basic data for seismic design of underground utility tunnel structures.

Study on Seismic Fragility Analysis of Water Supply Facilities (상수도 시설물의 지진 취약도)

  • Lee, Changsoo;Shin, Deasub;Lee, Hodam
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.1
    • /
    • pp.35-43
    • /
    • 2015
  • In this study, The failure of water supply facilities is categorized into two phases: functional failure and complete collapse. The fragility curve of water supply facilities under PGA has been developed for two loading cases: actual overseas earthquake and Korean artificial earthquake. The seismic fragility of water supply facilities has been analyzed and compared about failure phases and PGA. From the analysis results, the probability of failure of the wrapped steel pipe and ductile case iron pipe under Korean artificial earthquake has been shown as lower than that under actual overseas earthquake in the range from 0.1 to 0.4. The suggested seismic fragility curve by using Korean artificial earthquake can be exploited in a reasonable seismic design reflecting Korean local ground condition.

Design of Real-Time Ground Motion Monitoring System using MMA data (MMA 데이터를 이용한 실시간 지진동 감시 시스템 설계)

  • Lim, In-Seub;Song, Myung-Won;Jung, Soon-Key
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.5
    • /
    • pp.29-37
    • /
    • 2007
  • In this paper, we propose a new real-time ground motion monitoring system using MMA data which can be gathered more earlier than generic seismic data transmission method. Proposed system receives maximum, minimum and average data based on 20sps which is sent from station on every second continuously. And it calculates a PGA as a quantity of ground motion then visualizes that data to monitor the ground motion around whole country. To verify PGA data from MMA data, we checked Mu-dan-jang earthquake data of China on 2002/6/29. The proposed system was inspected by using log file of Oh-dae-san earthquake data on 2007/1/20. As results of experiment, the proposed system is proven to detect the event(earthquake) faster then existing method and to produce a useful quantitative information.

  • PDF

Modified HAZUS Method for Seismic Fragility Assessment of Domestic PSC-I Girder Bridges (PSC-I 거더교의 지진취약도 평가를 위한 HAZUS 방법의 국내 적용성 연구)

  • Seo, Hyeong-Yeol;Yi, Jin-Hak;Kim, Doo-Kie;Song, Jong-Keol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.2
    • /
    • pp.161-170
    • /
    • 2010
  • To reduce the amount of seismic damage, several design codes are being improved considering the earthquake resistant systems, and many researches are being conducted to develop the earthquake damage evaluation techniques. This study develops the Korean seismic fragility function using the modified HAZUS method applicable to PSC-I girder bridges in Korea. The major coefficients are modified considering the difference between the seismic design levels of America and Korea. Seismic fragility function of the PSC-I girder bridge (one of the standard bridge types in Korea) is evaluated using two methods: numerical analysis and modified HAZUS method. The main coefficients are obtained about 70% of the proposed values in HAZUS. It is found that the seismic fragility function obtained using the modified HAZUS method closes to the fragility function obtained by conventional numerical analysis method.

Experimental Study for Seismic Behavior Analysis of a Fire Protection Riser Pipe System with Groove Joints (그루브 조인트가 설치된 수계소화설비 입상배관계통의 지진거동분석을 위한 실험적 연구)

  • Kim, Sung-Wan;Yun, Da-Woon;Kim, Jae-Bong;Jeon, Bub-Gyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.2
    • /
    • pp.35-42
    • /
    • 2021
  • In this study, a steel frame that realized the second floor of a structure was fabricated in referring to NFPA 13. In addition, a riser pipe system with groove joints was installed, and a seismic simulation test was performed using static cyclic loading. Cyclic loading tests on the maximum allowable side sway of seismic design standards for buildings in Korea were conducted using actuators to analyze the seismic behavior of the riser pipe system and major piping elements due to the deformation of the steel frame structure or the displacement-dominant behavior caused by the relative displacement between the structural members in the event of a seismic load. Moreover, the deformation angle of the riser pipe system was measured using an image measurement system because it is difficult to measure using the conventional sensors.

Effect of Seismic Load on Residential RC Buildings under Construction Considering Construction Period (시공기간을 고려한 주거용 철근콘크리트 건물의 시공 중 지진하중 영향 분석)

  • Choi, Seong-Hyeon;Kim, Jea-Yo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.4
    • /
    • pp.235-242
    • /
    • 2022
  • Compared with buildings that have already been constructed, buildings under construction may be more vulnerable to such natural disasters as earthquakes because the concrete strength is not yet sufficient. Currently, Korean design standards present minimum performance targets for each seismic grade of buildings, but the seismic load for design is based on a return period of 2400 years. However, because the construction period of the building is much shorter than the period of use of the building, the application of the earthquake return period of 2400 years to buildings under construction may be excessive. Therefore, in this study, a construction stage model of buildings with 5, 15, 25, and 60 floors was created to analyze earthquake loads during construction of residential reinforced concrete (RC) buildings. The structural stability was confirmed by applying reduced seismic loads according to the return period. As a result, the structural stability was checked for an earthquake of the return period selected according to the construction period, and the earthquake return period that can secure structural safety according to the size of the building was confirmed.

RSM-based Practical Optimum Design of TMD for Control of Structural Response Considering Weighted Multiple Objectives (가중 다목적성을 고려한 구조물 응답 제어용 TMD의 RSM 기반 실용적 최적 설계)

  • Do, Jeongyun;Guk, Seongoh;Kim, Dookie
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.113-125
    • /
    • 2017
  • In spite of bulk literature about the tuning of TMD, the effectiveness of TMD in reducing the seismic response of engineering structures is still in a row. This paper deals with the optimum tuning parameters of a passive TMD and simulated on MATLAB with a ten-story numerical shear building. A weighted multi-objective optimization method based on computer experiment consisting of coupled with central composite design(CCD) central composite design and response surface methodology(RSM) was applied to find out the optimum tuning parameters of TMD. After the optimization, the so-conceived TMD turns out to be optimal with respect to the specific seismic event, hence allowing for an optimum reduction in seismic response. The method was employed on above structure by assuming first the El Centro seismic input as a sort of benchmark excitation, and then additional recent strong-motion earthquakes. It is found that the RSM based weighted multi-objective optimized damper improves frequency responses and root mean square displacements of the structure without TMD by 31.6% and 82.3% under El Centro earthquake, respectively, and has an equal or higher performance than the conventionally designed dampers with respect to frequency responses and root mean square displacements and when applied to earthquakes.

Risk-Targeted Seismic Performance of Steel Ordinary Concentrically Braced Frames Considering Seismic Hazard (지진재해도를 고려한 철골 보통중심가새골조의 위험도기반 내진성능)

  • Shin, Dong-Hyeon;Hong, Suk-Jae;Kim, Hyung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.5
    • /
    • pp.371-380
    • /
    • 2017
  • The risk-targeted seismic design concept was first included in ASCE/SEI 7-10 to address problems related to the uniform-hazard based seismic concept that has been constructed without explicitly considering probabilistic uncertainties in the collapse capacities of structures. However, this concept is not yet reflected to the current Korean building code(KBC) because of insufficient strong earthquake data occurred at the Korean peninsula and little information on the collapse capacities of structures. This study evaluates the risk-targeted seismic performance of steel ordinary concentrically braced frames(OCBFs). To do this, the collapse capacities of prototype steel OCBFs are assessed with various analysis parameters including building locations, building heights and soil conditions. The seismic hazard curves are developed using an empirical spectral shape prediction model that is capable of reflecting the characteristics of earthquake records. The collapse probabilities of the prototype steel OCBFs located at the Korean major cities are then evaluated using the risk integral concept. As a result, analysis parameters considerably influence the collapse probabilities of steel OCBFs. The collapse probabilities of taller steel OCBFs exceed the target seismic risk of 1 percent in 50 years, which the introduction of the height limitation of steel OCBFs into the future KBC should be considered.

Equivalent Strut Model for Seismic Design of Steel Moment Connections Reinforced with Ribs (리브로 보강된 철골 모멘트 접합부의 내진설계를 위한 등가 스트럿 모델)

  • 이철호
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.3
    • /
    • pp.79-85
    • /
    • 2001
  • This paper presents an equivalent strut model for seismic design of steel moment connections reinforced with ribs. It is shown from the finite element analysis results that the force transfer mechanism in the rib connections is completely different from that predicted by the classical beam theory and a clear strut action in the ribs does exist. By treating the rib as a strut, an equivalent strut model that could be used as the basis of a practical design procedure is proposed.

  • PDF

A Study on the Equivalent Static Analysis of Unreinforced Masonry Buildings (비보강 조적조 건물의 등가 정적 해석에 관한 연구)

  • 정상훈;김관중;김희철
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.4 no.3
    • /
    • pp.1-10
    • /
    • 2000
  • 우리 나라의 주거 건물의 많은 부분을 차지하는 조적조 건물은 저층이므로 내진 설계에 대한 지침이 마련되어 있지 않다. 그러나 조적조 건물의 경우 저층이라 하더라도 구조특성상 수평하중에 대한 저항능력이 매우 약하므로 내진 설계에 대한 기준이 요구된다. 일반적으로 내진설계 시 동적 해석을 수행하면 많은 시간이 소모되므로 실무자들에게 등가정적해석법을 제시하여 내진설계 시 편의를 제공하고 있다. 그러나 저층 조적조 건물은 일반적인 건물과는 거동 특성이 다르므로 저층 조적조 건물에 적용할 수 있는 해석법을 제시하고자 한다. 본 논문에서는 개구부의 비율에 따른 조적벽의 연성도, 강도 및 고유주기를 구하여 반응수정계수와 고유주기를 비교하여 우리 나라의 조적조 건물에 적합한 반응수정계수와 고유주기 산정식을 제안하였다.

  • PDF