• Title/Summary/Keyword: 지진관측소

Search Result 137, Processing Time 0.023 seconds

Site responses of Japanese stations near the epicenter and Korean stations for the Fukuoka earthquake (후쿠오카 지진('05. 3. 20, $M_{JMA}=7.0$)에 대한 일본 인근 지진관측소와 국내 지진관측소의 주파수응답특성 비교)

  • Yun Kwan-Hee;Park Dong-Hee;Chang Chun-Jung;Choi Weon-Hack;Lee Dae-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.79-86
    • /
    • 2005
  • The apparent source spectrum of the Fukuoka earthquake is estimated at the seismic basement by removing from the observed spectra at Korean seismic stations the path and site responses that were previously revealed through inversion process applied to large spectral D/B accumulated until 2004. The approximate source spectrum is also estimated by using data recorded near the epicenter from various Japanese seismic networks and compared with the Korean source spectrum. The comparison result shows that there is good agreement among source spectra estimated based on the data from seismic networks of Korea at large distances (190km

  • PDF

Site Responses of Japanese Stations Near the Epicenter and Korean Stations for the Fukuoka Earthquake (후쿠오카 지진 ('05. 3. 20, $M_{JMA}=7.0$)에 대한 일본 인근 지진관측소와 국내 지진관측소의 주파수응답특성 비교)

  • Yun, Kwan-Hee;Park, Dong-Hee;Chang, Chun-Jung;Choi, Weon-Hack;Lee, Dae-Soo
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.1
    • /
    • pp.15-21
    • /
    • 2005
  • The apparent source spectrum of the Fukuoka earthquake is estimated at the seismic basement by removing from the observed spectra at Korean seismic stations the path and site responses that were previously revealed through inversion process applied to large spectral D/B accumulated until 2004. The approximate source spectrum is also estimated by using data recorded near the epicenter from various Japanese seismic networks and compared with the Korean source spectrum. The comparison result shows that there is good agreement among source spectra estimated based on the data from seismic networks of Korea at large distances (190 km

  • PDF

A Study on Temporal Variations of Geomagnetic Transfer Functions and Polarization Values Obtained at Cheongyang Geomagnetic Observatory (청양 지자기관측소에서 획득된 지자기전달함수와 분극값의 시간변동성에 대한 연구)

  • Yang, Jun-Mo;Lee, Heui-Soon;Oh, Seok-Hoon
    • Journal of the Korean earth science society
    • /
    • v.30 no.7
    • /
    • pp.824-833
    • /
    • 2009
  • We analyzed a total of six months of geomagnetic data obtained at Cheonyang observatory, which is operated by Korean Meteorological Administration, to monitor earthquake precursors. Geomagnetic transfer functions (GTFs) and polarization values, which reflect the time-variations of the resistivity of subsurface, were estimated from 3-component geomagnetic data. The time-variant fluctuations were compared with the earthquake events occurred in the same period. Now that the daily GTFs show fairly irregular variations, we can not identify any correlation with the already occurred earthquakes and Kp index. On the other hand, we detect clear increases of the Ultra-Low-Frequency (ULF) band polarization values before the earthquakes, but the similar features are also observed even though the earthquake did not occur. This result may indicate that these time-variations are not just due to the earthquake precursor. For further understanding about these results, we need to investigate the relationship between the previous earthquake events and the geomagnetic data of other observatories.

Numerical Test for the 2D Q Tomography Inversion Based on the Stochastic Ground-motion Model (추계학적 지진동모델에 기반한 2D Q 토모그래피 수치모델 역산)

  • Yun, Kwan-Hee;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.3
    • /
    • pp.191-202
    • /
    • 2007
  • To identify the detailed attenuation structure in the southern Korean Peninsula, a numerical test was conducted for the Q tomography inversion to be applied to the accumulated dataset until 2005. In particular, the stochastic pointsource ground-motion model (STGM model; Boore, 2003) was adopted for the 2D Q tomography inversion for direct application to simulating the strong ground-motion. Simultaneous inversion of the STGM model parameters with a regional single Q model was performed to evaluate the source and site effects which were necessary to generate an artificial dataset for the numerical test. The artificial dataset consists of simulated Fourier spectra that resemble the real data in the magnitude-distance-frequency-error distribution except replacement of the regional single Q model with a checkerboard type of high and low values of laterally varying Q models. The total number of Q blocks used for the checkerboard test was 75 (grid size of $35{\times}44km^2$ for Q blocks); Q functional form of $Q_0f^{\eta}$ ($Q_0$=100 or 500, 0.0 < ${\eta}$ < 1.0) was assigned to each Q block for the checkerboard test. The checkerboard test has been implemented in three steps. At the first step, the initial values of Q-values for 75 blocks were estimated. At the second step, the site amplification function was estimated by using the initial guess of A(f) which is the mean site amplification functions (Yun and Suh, 2007) for the site class. The last step is to invert the tomographic Q-values of 75 blocks based on the results of the first and second steps. As a result of the checkerboard test, it was demonstrated that Q-values could be robustly estimated by using the 2D Q tomography inversion method even in the presence of perturbed source and site effects from the true input model.

Study on the Use of Bracketed Summations of the Peak Ground-motion Acceleration Per Second for Rapid Earthquake Alert Notifications (신속 지진피해통보를 위한 지반가속도의 초당 최대값 구간적산 방법의 활용에 관한 연구)

  • Yun, Kwan-Hee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.37-45
    • /
    • 2012
  • In an effort to further exploit the peak ground-motion acceleration (PGA) information per second available in real time by the enacted law, bracketed summations of the PGA per second ($BSPGA_k$) for 30 seconds based on the records with a rate of 100 samples were compared with the cumulative absolute velocity (CAV) and earthquake intensities based on a worldwide database of records from small-to-large earthquakes. The CAV, currently in use as an earthquake damage indicator for nuclear power plants due to its strong correlation with the earthquake intensity, has the disadvantage of requiring a massive amount of digital data with a rate of more than 100 samples per second. The comparative study shows that the $BSPGA_k$ is well correlated with the CAV over the wide range of strong ground-motion levels, which suggests that the $BSPGA_k$ is one of the new promising ground-motion parameters especially useful for rapid earthquake alert notifications through an earthquake monitoring network. Based on the domestic database of records from small-to-moderate earthquakes with felt reports, it is also observed that the $BSPGA_k$ is comparable to the CAV and better than the PGA in predicting the intensity by using the correlation relation.

Earthquake Engineering Bedrock Based on the Shear Wave Velocities of Rock Strata in Korea (국내 암반지층의 전단파속도에 근거한 지진공학적 기반암 결정)

  • Sun, Chang-Guk
    • The Journal of Engineering Geology
    • /
    • v.24 no.2
    • /
    • pp.273-281
    • /
    • 2014
  • In most current seismic design codes, design earthquake ground motions are defined by a reference spectrum, based on bedrock and site amplification factors that quantify the geotechnical dynamic conditions. Earthquake engineering bedrock is the fundamental geotechnical formation where the seismic waves are attenuated without amplification. To better define bedrock in an earthquake engineering context, shear wave velocity ($V_S$ ) data obtained from in-situ seismic tests were examined for several rock strata in Korea; these data were categorized by borehole drilling investigations. The $V_S$ values for most soft rock data in Korea are > 750 m/s, which is the threshold $V_S$ value for identifying engineering bedrock from a strong motion station. Conversely, VS values are < 750 m/s for 60% of $V_S$ data in weathered rock in Korea. Thus, the soft (or harder) rock strata below the weathered rock layer in Korea can be regarded as earthquake engineering bedrock.

Derivation the Correction of the Component of the Recorder and the Application of Hilbert Transformation to Calculating the Frequency Response of the Sensor (지진기록계 보정과 힐버트 변환 적용에 의한 센서 주파수 응답 계산)

  • Cho, Chang Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.2
    • /
    • pp.84-90
    • /
    • 2016
  • The validation of performance test for newly developed or old-used sensor is very important in the earthquake monitoring and seismology using earthquake data. Especially the frequency response of the sensor is mainly used to correct the earthquake data. The technique of the calculation of phase and amplitude with Hilbert transformation for earthquake data that is filtered with band limited frequency in time domain is applied to calculate the frequency response of the sensor. This technique was tested for the acceleration sensors, CMG-5T of 1g and 2g installed on the vibration table at the laboratory and we could obtain satisfactory result. Tohoku large earthquake in 2011 observed at the station SNU that has accelerometer, ES-T and seismometer, STS-2 operated by KIGAM was also used to test the field data applicability. We could successfully get the low frequency response of broad band sensor, STS-2. The technique by using band limited frequency filter and Hilbert transformation showed the superior frequency response to the frequency spectrum ratio method for noisy part in data.

Receiver Function Inversion Beneath Ngauruhoe Volcano, New Zealand, using the Genetic Algorithm (유전자 알고리즘을 이용한 뉴질랜드 Ngauruhoe 화산 하부의 수신함수 역산)

  • Park, Iseul;Kim, Ki Young
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • To estimate the shear-wave velocity (${\nu}_s$ beneath the OTVZ seismic station on Ngauruhoe volcano in New Zealand, we calculated receiver functions (RFs) using 127 teleseismic data ($Mw{\geq}5.5$) with high signal-to-noise ratios recorded during November 11, 2011 to September 11, 2013. The genetic inversion algorithms was applied to 21 RFs calculated by the iterative time-domain deconvolution method. In the 1-D ${\nu}_s$ model derived by the inversion, the Moho is observed at a 14 km depth, marked by a ${\nu}_s$ transition from 3.7 km/s to 4.7 km/s. The average ${\nu}_s$ of the overlying crust is 3.4 km/s, and the average ${\nu}_s$ of a greater than 9-km thick low-velocity layer (LVL) in the lower crust is 3.1 km/s. The LVL becomes thinner with increasing distance from the station. Another LVL thicker than 10 km with ${\nu}_s$ less than 4.3 km/s is found in the upper mantle. Those LVLs in the lower crust and the upper mantle and the relatively thin crust might be related to the magma activity caused by the subducting Pacific plate.

Analysis of Crustal Velocity Structure Beneath Gangwon Province, South Korea, Using Joint Inversion of Receiver Functions and Surface Wave Dispersion (수신함수와 표면파 분산의 연합 역산을 사용한 강원도 지역 하부의 지각속도구조 분석)

  • Jeong-Yeon Hwang;Sung-Joon Chang
    • Economic and Environmental Geology
    • /
    • v.56 no.3
    • /
    • pp.277-291
    • /
    • 2023
  • To analyze the crustal velocity structures beneath 21 broadband seismic stations in Gangwon Province, South Korea, we first applied the H-κ stacking method to 139 teleseismic event data (Mw ≥ 5.8 and the epicentral distance of 30° - 90°) occurring between March 18, 2019 and December 31, 2022 to estimate the Moho depths and Vp/Vs ratios beneath each station. The Moho depths and Vp/Vs ratios from the H-κ stacking method range from 24.9 to 33.2 km depth and 1.695 - 1.760, respectively, and the estimated Vp/Vs ratios were applied to the joint inversion of receiver functions and surface wave dispersion to obtain 1-D crustal velocity models beneath each station. The resulting Moho depths range from 25.9 to 33.7 km depth, similar to the results from the H-κ stacking method. Moho depth results from the both methods are generally consistent with Airy's isostasy. The 1-D crustal velocity models confirm that the existence of 2 km thick low-velocity layers with P-wave velocities of 5 km/s or less at some stations in the Taebaeksan basin, and at the stations CHNB and GAPB in northern Gangwon Province, which are located above the Cenozoic sedimentary layer. The station SH2B, although not overlying a sedimentary layer, has a low P-wave velocity near the surface, which is probably due to various factors such as weathering of the bedrock. We also observe a velocity inversion with decreasing velocity with depth at all stations within 4 - 12 km depths, and mid-crustal discontinuities possibly due to density differences in the rocks at around 10 km depth below some stations.

Crustal structure beneath broadband seismic station using receiver function (수신함수를 이용한 관측소 하부의 지진파 속도구조)

  • 박윤경;전정수;김성균
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.45-49
    • /
    • 2003
  • The velocity structure beneath the CHNB broadband station is determined by receiver function analysis using by from teleseismic P waveforms. The detailed broadband receiver functions are obtained by stacking method for source-equalized vertical, radial and tangential components of teleseismic P waveforms. A time domain inversion uses the stacked radial receiver function to determine vertical P wave velocity structure beneath the station. The crustal velocity structures beneath the stations are estimated using the receiver function inversion method in the case at the crustal model parameterized by many thin, flat-tying, homogeneous layers. The result of crust at model inversion shows the crustal velocity structure beneath the CHNB station varies smoothly with increasing depth, and there are six discontinuity around 2.5km, 6.25km, 12.5km, 22.5km and 27.5km depth, with Moho discontinuity at about 32.5km depth.

  • PDF