Browse > Article
http://dx.doi.org/10.7582/GGE.2015.18.1.001

Receiver Function Inversion Beneath Ngauruhoe Volcano, New Zealand, using the Genetic Algorithm  

Park, Iseul (Department of Geophysics, Kangwon National University)
Kim, Ki Young (Department of Geophysics, Kangwon National University)
Publication Information
Geophysics and Geophysical Exploration / v.18, no.1, 2015 , pp. 1-8 More about this Journal
Abstract
To estimate the shear-wave velocity (${\nu}_s$ beneath the OTVZ seismic station on Ngauruhoe volcano in New Zealand, we calculated receiver functions (RFs) using 127 teleseismic data ($Mw{\geq}5.5$) with high signal-to-noise ratios recorded during November 11, 2011 to September 11, 2013. The genetic inversion algorithms was applied to 21 RFs calculated by the iterative time-domain deconvolution method. In the 1-D ${\nu}_s$ model derived by the inversion, the Moho is observed at a 14 km depth, marked by a ${\nu}_s$ transition from 3.7 km/s to 4.7 km/s. The average ${\nu}_s$ of the overlying crust is 3.4 km/s, and the average ${\nu}_s$ of a greater than 9-km thick low-velocity layer (LVL) in the lower crust is 3.1 km/s. The LVL becomes thinner with increasing distance from the station. Another LVL thicker than 10 km with ${\nu}_s$ less than 4.3 km/s is found in the upper mantle. Those LVLs in the lower crust and the upper mantle and the relatively thin crust might be related to the magma activity caused by the subducting Pacific plate.
Keywords
Ngauruhoe volcano; receiver function; genetic algorithm; low velocity layer; Moho; magma;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Deering, C. D., Horton, T. W., Gravley, D. M., and Cole, J. W., 2012, Hornblende, cummingtonite, and biotite hydrogen isotopes: Direct evidence of slab-derived fluid flux in silicic magmas of the Taupo Volcanic Zone, New Zealand, Journal of Volcanology and Geothermal Research, 233-234, 27-36.   DOI
2 Dugda, M. T., Workineh, A. T., Homaifar, A., and Kim, J. H., 2012, Receiver function inversion using genetic algorithms, Bulletin of the Seismological Society of America, 102, 2245-2251.   DOI
3 Graham, I. J., and Hackett, W. R., 1987, Petrology of calcalkaline lavas from Ruapehu volcano and related vents, Taupo Volcanic Zone, New Zealand, Journal of Petrology, 28, 531-567.   DOI
4 Gurrola, H., Minster, J. B., Given, H., Vernon, F., Berger, J., and Aster, R., 1990, Analysis of high-frequency seismic moise in the Western United-States and Eastern Kazakhstan, Bulletin of the Seismological Society of America, 80, 951-970.
5 Harrison, A., and White, R. S., 2006, Lithospheric structure of an active backarc basin: the Taupo Volcanic Zone, New Zealand, Geophysical Journal International, 167, 968-990.   DOI
6 Heise, W., Caldwell, T. G., Bibby, H. M., and Bennie, S. L., 2010, Three-dimensional electrical resistivity image of magma beneath an active continental rift, Taupo Volcanic Zone, New Zealand, Geophysical Research Letters, 37, doi: 10.1029/2010GL043110.   DOI
7 Hetland, E. A., Wu, F. T., and Song, J. L., 2004, Crustal structure in the Changbaishan volcanic area, China, determined by modeling receiver functions, Tectonophysics, 386, 157-175.   DOI
8 Hobden, B. J., Houghton, B. F., and Nairn, I. A., 2002, Growth of a young, frequently active composite Ngauruhoe volcano, New Zealand, Bulletin of Volcanology, 64, 392-409.   DOI
9 Agostinetti, N. P., and Chiarabba, C., 2008, Seismic structure beneath Mt Vesuvius from receiver function analysis and local earthquakes tomography: evidences for location and geometry of the magma chamber, Geophysical Journal International, 175, 1298-1308.   DOI   ScienceOn
10 Ammon, C. J., Randall, G. E., and Zandt, G., 1990, On the nonuniqueeness of receiver function inversions, Journal of Geophysical Research, 95, 15303-15318.   DOI
11 Ammon, C. J., 1992, A comparison of deconvolution techniques, Lawrence Livermore National Laboratory Report, UCID-ID-111667, 1-43.
12 Langston, C. A., 1979, Structure under Mount Rainier, Washington, inferred from teleseismic body waves, Journal of Geophysical Research, 84, 4749-4762.   DOI
13 Holland, J. H., 1975, Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence, The University of Michigan press.
14 Kikuchi, M., and Kanamori, H., 1982, Inversion of complex body waves, Bulletin of the Seismological Society of Hazard Mitigation, 1, 139-155.
15 Krishnakumar, K., 1989, Micro-genetic algorithms for stationary and non-stationary function optimization, in SPIE, Intelligent Control and Adaptive Systems, Vol. 1196, International Society for Optical Engineering.
16 Lawrence, J. F., and Shearer, P. M., 2006, A global study of transition zone thickness using receiver functions, Journal of Geophysical Research: Soild Earth, 111, doi: 10.1029/2005JB003973.   DOI
17 Li, X., Sobolev, S. V., Kind, R., Yuan, X., and Estabrook, Ch., 2000, A detailed receiver function image of the upper mantle discontinuities in the Japan subduction zone, Earth and Planetary Science Letters, 183, 527-541.   DOI
18 Ligorria, J. P., and Ammon, C. J., 1999, Iterative deconvolution and receiver-function estimation, Bulletin of the Seismological Society of America, 89, 1395-1400.
19 Mathews, W. H., 1967, A contribution to the geology of the Mount Tongariro massif, North Island, New Zealand, New Zealand Journal of Geology and Geophysics, 10, 1027-1039.   DOI
20 Nairn, I. A., and Self, S., 1978, Explosive eruptions and pyroclastic avalanches from Ngauruhoe in February 1975, Journal of Volcanology and Geothermal Research, 3, 39-60.   DOI
21 Sambridge, M., 1999, Geophysical inversion with a neighbourhood algorithm-I. Searching a parameter space, Geophysical Journal International, 138, 479-494.   DOI
22 Owens, T. J., Zandt, G., and Taylor, S. R., 1984, Seismic evidence for an ancient rift beneath the Cumberland Plateau, Tennessee: A detailed analysis of broadband teleseismic P waveforms, Journal of Geophysical Research: Solid Earth, 89, 7783-7795.   DOI
23 Price, R. C., Turner, S., Cook, C., Hobden, B., Smith, I. E. M., Gamble, J. A., Handley, H., Maas, R., and Mobis, A., 2010, Crustal and mantle influences and U-Th-Ra disequilibrium in andesitic lavas of Ngauruhoe volcano, New Zealand, Chemical Geology, 277, 355-373.   DOI
24 Reyners, M., 1980, A microearthquake study of the plate boundary, North Island, New Zealand, Geophysical Journal of the Royal Astronomical Society, 63, 1-22.   DOI
25 Shibutani, T., Sambridge, M., and Kennett, B., 1996, Genetic algorithm inversion for receiver functions with application to crust and uppermost mantle structure beneath Eastern Australia, Geophysical Research Letters, 23, 1829-1832.   DOI   ScienceOn
26 Stern, T. A., 1987, Asymmetric back-arc spreading, heat flux and structure associated with the Central Volcanic Region of New Zealand, Earth and Planetary Science Letters, 85, 265-276.   DOI
27 Stern, T. A., and Davey, F. J., 1987, A seismic investigation of the crustal and upper mantle structure within the Central Volcanic Region of New Zealand, New Zealand Journal of Geology and Geophysics, 30, 217-231.   DOI
28 Stern, T., Stratford, W., Seward, A., Henderson, M., Savage, M., Smith, E., Benson, A., Greve, S., and Salmon, M., 2010, Crust-mantle structure of the central North Island, New Zealand based on seismological observations, Journal of Volcanology and Geothermal Research, 190, 58-74.   DOI
29 Bianchi, I., Agostinetti, N. P., Gori, P. D., and Chiarabba, C., 2008, Deep structure of the Colli Albani volcanic district (central Italy) from receiver functions analysis, Journal of Geophysical Research: Solid Earth, 113, doi: 10.1029/2007JB005548.   DOI
30 Bannister, S., Bryan, C. J., and Bibby, H. M., 2004, Shear wave velocity variation across the Taupo Volcanic Zone, New Zealand, from receiver function inversion, Geophysical Journal International, 159, 291-310.   DOI
31 Camp, C., Pezeshk, S., and Cao, G., 1998, Optimized design of two-dimensional structures using a genetic algorithm, Journal of Structural Engineering, 124, 551-559.   DOI
32 Cassidy, J. F., 1992, Numerical experiments in broadband receiver function analysis, Bulletin of the Seismological Society of America, 82, 1453-1474.
33 Chang, S.-J., Baag, C.-E., and Langston, C. A., 2004, Joint analysis of teleseismic receiver function and surface wave dispersion using the genetic algorithm, eastern kazakhstan, Bulletin of the Seismological Society of America, 94, 691-704.   DOI
34 Chen, L., and Ai, Y., 2009, Discontinuity structure of the mantle transition zone beneath the North China Craton from receiver function migration, Journal of Geophysical Research: Solid Earth, 114, doi: 10.1029/2008JB006221.   DOI
35 Clayton, R. W., and Wiggins, R. A., 1976, Source shape estimation and deconvolution of teleseismic body waves, Geophysical Journal Royal Astronomical Society, 47, 151-177.   DOI
36 Cole, J. W., 1990, Structure control and origin of volcanism in the Taupo volcanic zone, New Zealand, Bulletin of Volcanology, 52, 445-459.   DOI
37 Zhu, L., Owens, T. J., and Randall, G. E., 1995, Lateral variation in crustal structure of the Northern Tibetan Plateau inferred from teleseismic receiver functions, Bulletin of the Seismological Society of America, 85, 1531-1540.
38 Studt, F. E., and Thompson, G. E. K., 1969, Geothermal heat flow in the North Island of New Zealand, New Zealand Journal of Geology and Geophysics, 12, 673-683.   DOI
39 Thomson, A. A., and Evison, F. F., 1962, Thickness of the earth's crust in New Zealand, New Zealand Journal of Geology and Geophysics, 5, 29-45.   DOI
40 Wilson, C. J. N., Houghton, B. F., Mcwilliams, M. O., Lanphere, M. A., Weaver, S. D., and Briggs, R. M., 1995, Volcanic and structural evolution of Taupo Volcanic Zone, New Zealand: a review, Journal of Volcanology and Geothermal Research, 68, 1-28.   DOI