• Title/Summary/Keyword: 지진가속도

Search Result 442, Processing Time 0.031 seconds

Analysis of Characteristics of Vertical Response Spectrum of Ground Motions from Domestic Earthquakes (국내 관측자료를 이용한 수직 응답스펙트럼 특성 분석)

  • Kim, Jun-Kyoung;Hong, Seung-Min;Park, Ki-Jong
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.227-234
    • /
    • 2010
  • The vertical response spectra using the observed ground motions from the recent more than 30 macro earthquakes were analysed and then were compared both to the seismic design response spectra (Reg Guide 1.60), applied to the domestic nuclear power plants, and to the Korean Standard Design Response Spectrum for general structures and buildings (1997). 176 vertical ground motions, without considering soil types, were used for normalization with respect to the peak acceleration value of each ground motion. The results showed that response spectrum had strong dependency on epicentral distance. The results also showed that the vertical response spectra revealed much higher values for frequency bands above 5~7 Hz than Reg. Guide (1.60). The results were also compared to the Korean Standard Response Spectrum for the 3 different soil types and showed that the vertical response spectra revealed much higher values for the frequency bands below 0.2 second (5 Hz) than the Korean Standard Response Spectrum (SD soil condition). These frequency-dependent spectral values could be related to the characteristics of the domestic crustal attenuation and the effect of each site amplification. However, through the qualitative improvements and quantitative enhancement of the observed ground motions, the conservation of vertical seismic design response spectrum should be considered more significantly for the frequency bands above 5 Hz.

Study on the Site Classification and Site Coefficients for the Seismic Design Regulations of KBC (KBC 내진설계기준을 위한 지반분류와 지반계수에 대한 연구)

  • Kim, Yong-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.1 s.53
    • /
    • pp.59-65
    • /
    • 2007
  • Site classification of IBC and KBC is based on the ft-kips unit system and is not friendly for the linear interpolation of the site coefficients due to the implicit relationship between a site class and site coefficients, defining a site class by the range of the soil properties, not by a single soil property. Also, the site class definition of KBC has too wide range of soil properties for each soil class. making the structural engineers difficult to estimate the site coefficients for the diverse soil layers. In this study, a new site classification in SI unit system was proposed for the seismic design codes of KBC etc., and the comparison of the site coefficients of $F_{a}\;and\;F_{v}$ was also performed to investigate the possibility of the linear interpolation of the site coefficients with the proposed new site classification. According to the study results, it was more reasonable for the linear interpolation of the site coefficients to utilize the proposed new site classification considered the Sl unit system and the soil characteristics of the 30m soil layer beneath the shallow embedded foundation, and the linear interpolation of the acceleration coefficients for the design spectrum can be performed more reasonably defining the site coefficients for the representative shear wave velocities of each site class. With the study results, a new site classification, and the linear interpolation permitted acceleration coefficients fer the design spectrum were proposed for the modification of the seismic design regulations of KBC.

A Comparison Study of the Amplification Characteristics of the Seismic Station near Yedang Reservoir using Background Noise, S-wave and Coda wave Energy (배경잡음, S파 및 Coda파 에너지를 이용한 예당저수지 인근부지의 지반증폭 특성에 관한 비교 연구)

  • Wee, Soung-Hoon;Kim, Jun-Kyoung;Yoo, Seong-Hwa;Kyung, Jai-Bok
    • Journal of the Korean earth science society
    • /
    • v.36 no.7
    • /
    • pp.632-642
    • /
    • 2015
  • Seismograms are composed of 3 characteristics, that is, seismic source, attenuation, and site amplification. Among them, site amplification characteristics should be considered significantly to estimate seismic source and attenuation characteristics with more confidence. This purpose of this study is to estimate the site amplification characteristics at each site using horizontal to vertical (H/V) spectral ratio method. This method, originally proposed by Nakamura (1989), has been applied to study the surface waves in microtremor records. It has been recently extended to the shear wave energy of strong motion and applied to the study of site amplification. This study analyzed the H/V spectral ratio of 6 ground motions respectively using observed data from 4 sites nearby in Yedang Reservoir. And then, site amplification effects at each site, from 3 kinds of seismic energies, that is, S waves, Coda waves energy, and background noise were compared each other. The results suggested that 4 sites showed its own characteristics of site amplification property in specific resonance frequency ranges (YDS: ~11 Hz, YDU: ~4 Hz, YDD: ~7 Hz). Comparison of this study to other studies using different analysis method can give us much more information about dynamic amplification of domestic sites characteristics and site classification.

P-wave Velocity Anisotropy in the Upper Crust of the Southern Korean Peninsula Using Seismic Signals from Large Explosions (대규모 발파자료를 이용한 한반도 남부 상부지각의 종파 속도 이방성)

  • Hong, Myung-Ho;Kim, Ki-Young
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.3
    • /
    • pp.225-232
    • /
    • 2009
  • As part of seismic experiments investigating crustal velocity structures of the Korean peninsula, permanent (fixed) seismographs of the Korea Meteorological Administration (KMA) network recorded seismic signals from four and eight large explosions in Korean Crustal Research Team (KCRT) profiles shot in 2004 and 2008, respectively. Among the seismograms recorded by 43 velocity sensors and 103 accelerometers at KMA stations distributed throughout the southern Korean Peninsula, 156 records with epicentral distances less than 120 km and high signal-to-noise ratios were analyzed to determine velocity anisotropy of the Pg phase. Relative elevation corrections of -101.6 to 105.3 ms were made using velocity information derived from the 2004 KCRT profile data and differences in elevation between the permanent KMA stations and the temporary stations in the KCRT profiles at the same source-receiver offsets. To remove site effects, receiver-station corrections of -89.6 to 192.2 ms were additionally made to the KMA station data by subtracting the average differences in traveltimes between KMA stations and portable stations at the same offsets for all available shots with different azimuths. With the exception of anomalously fast velocities along trends of the Chugaryeong fault zone and the Okchon fold belt and anomalously slow velocities in the regions of high terrestrial heat near Yeongduk and Ulsan, the analysis of crustal velocity anisotropy using the Pg phase indicates overall isotropy in the southern half of the Korean peninsula.

The Vibration Comfort Evaluation of the Shaking Table Mass Foundation (진동대 반력기초의 진동사용성 평가)

  • Choi, Hyoung-Suk;Jung, Da-Jung;Kim, Seong-Do;Cheung, Jin-Hwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.53-60
    • /
    • 2011
  • When designing building structures, dynamic serviceability is one of the most important items. Much research is being carried out on machine vibrations that affect inside residents and expensive equipment in the building structure. The vibration effect generally depends on the mass ratio, and an adequate mass ratio is determined by comparison with the serviceability limit according to the criteria. This study investigates the evaluation of vibration serviceability by using ISO 2631 to confirm the propriety of adequate mass ratios and it is verified that the application of a complicated FE model to model the real large shaking table facility with the mathematical model simulated as a SDOF system. The weighted RMS value is then compared with the comfort limit given by ISO 2631. As a result, the analysis of the numerical model is consistent with analysis of the FE model. Moreover, it is found that the adequate mass ratio of the concrete foundation and shake table, considering the self-weight of the real facility, should be less than 0.013. It is also confirm that the sample facility is satisfies the requirement of an adequate mass ratio.

Back Analysis Technique for the Estimation of Tension Force on Hanger Cables (역해석기법을 이용한 행어케이블의 장력 추정)

  • Kim, Nam-Sik;Park, Dong-Uk;Park, Yong-Myung;Cheung, Jin-Hwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.3 s.55
    • /
    • pp.1-10
    • /
    • 2007
  • In general, the tension forces of hanger cable in suspension bridges play an important role in evaluating the bridge conditions. The vibration method, as a conventional one, has been widely applied to estimate the tension forces by using the measured frequencies on hanger cables. However, the vibration method is not applicable to short hanger cables because the fiequencies of short cables are severely sensitive to flexural rigidity. Thus, in this study, the tension forces of short hanger cables, of which the length is shorter than 10 meters, were estimated through back analysis of the cable fiequencies measured from Gwang-An suspension bridge in Korea. Direct approach to back analysis is adopted using the univariate method among the direct search methods as an optimization technique. The univariate method is able to search the optimal tension forces without regard to the initial ones and has a rapid convergence rate. To verify the feasibility of back analysis, the results from back analysis and vibration method are compared with the design tension forces. From the comparison, it can be inferred that back analysis results are more reasonable agreement with the design tension forces of short hanger cable. Therefore, it is concluded that back analysis applied in this study is an appropriate tool for estimating tension forces of short hanger cables.

Analysis of Characteristics of Horizontal Response Spectrum of Ground Motions from 19 Earthquakes (국내 관측자료를 이용한 수평 응답스펙트럼 특성 분석)

  • Kim, Jun-Kyoung
    • Tunnel and Underground Space
    • /
    • v.20 no.6
    • /
    • pp.399-407
    • /
    • 2010
  • The horizontal response spectra using the observed ground motions from the recent more than 19 macro earthquakes were analysed and then were compared to both the seismic design response spectra (Reg Guide 1.60), applied to the domestic nuclear power plants, and the Korean Standard Design Response Spectrum for general structures and buildings (1997). 130 horizontal ground motions, without considering soil types, were used for normalization with respect to the peak acceleration value of each ground motion. The results showed that response spectrum have strong dependency on epicentral distance. The results also showed that the horizontal response spectra revealed much higher values for frequency bands above 5 Hz than Reg. Guide (1.60). The results were also compared to the Korean Standard Response Spectrum for the 3 different soil types and showed that the vertical response spectra revealed much higher values for the frequency bands below 0.3 second than the Korean Standard Response Spectrum (SD soil condition). These spectral values dependent on frequency could be related to characteristics of the domestic crustal attenuation and the effect of each site amplification. However, through the qualitative improvements and quantitative enhancement of the observed ground motions, the conservation of horizontal seismic design response spectrum should be considered more significantly for the frequency bands above 5 Hz.

Characteristics of Vertical/Horizontal Ratio of Response Spectrum from Domestic Ground Motions (국내 관측자료를 이용한 응답스펙트럼의 수직/수평비 특성 분석)

  • Kim, Junkyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.1
    • /
    • pp.81-87
    • /
    • 2011
  • The characteristics of vertical to horizontal ratio of response spectrum from 20 recent earthquakes were analysed. Response spectrum of 260 horizontal and 130 vertical ground motions were normalized by peak ground acceleration at each resonance frequency from 0.1 to 50Hz. It has been identified that the ratio of vertical to horizontal response spectrum has strong dependancy on epicentral distance and resonance frequency. The ratio of vertical to horizontal response spectrum for the 0-50km epicentral distance group are larger than 2/3 values, which is a standard engineering rule-of-thumb V/H=2/3, at resonance frequency above 7-8Hz. All the 3 groups such as 50-100, 100-150- and 150-200km epicentral distance have shown larger values of vertical to horizontal ratio than 2/3 at resonance frequency above 15Hz and also are larger than 2/3 at resonance frequency below 8-10Hz. Even though there are differences in specific resonance frequency values which depend on the epicentral distance group, we should be careful of seismic design of vertical component of the structures winch are located within the range of about 200km distance. form the potentially seismic causative faults.

Conservation for the Seismic Models of Intake Tower with Nonlinear Behaviors and Fluid Structure Interaction (비선형거동과 구조물유체상호작용을 고려한 취수탑 내진모델의 보수성평가)

  • Lee, Gye-Hee;Lee, Myoung-Kyu;Hong, Kwan-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.17-24
    • /
    • 2020
  • In this study, series of nonlinear seismic analysis were performed on a reinforced concrete intake tower surrounded by water. To consider the fluid effect around the structure, analysis models were composed using an added mass and CEL approach. At this time, the implicit method was used for the added mass model, and the explicit method was used for the fluid structure interaction model. The input motions were scaled to correspond to 500, 1000, and 2400 years return period of the same artificial earthquake. To estimate the counteractivity of the fluid coupled model, models without fluid effect were constructed and used as a reference. The material models of concrete and reinforcement were selected to consider the nonlinear behavior after yielding, and analysis were performed by ABAQUS. As results, in the acceleration response spectrum of the structure, it was found that the influence of the surrounding fluid reducing the peak frequency and magnitude corresponding to the fundamental frequency of the structure. However, the added mass model did not affect the peak value corresponding to the higher mode. The sectional moments were increased significantly in the case of the added mass model than those of the reference model. Especially, this amplification occurred largely for a small-sized earthquake response in which linear behavior is dominant. In the fluid structure interaction model, the sectional moment with a low frequency component amplifies compared to that of the reference model, but the sectional moment with a high requency component was not amplified. Based in these results, it was evaluated that the counteractivity of the additive mass model was greater than that of the fluid structure interaction model.

A Study on the Selection and Modification of Ground Motion Based on Site Response Analysis (부지응답해석에 기반한 지반운동 선정 및 보정에 관한 고찰)

  • Hwang, Jung-Hyun;Mauk, Ji-Wook;Son, Hyeon-Sil;Ock, Jong-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.103-110
    • /
    • 2020
  • In the recent seismic design code KDS 41 17 00, selection and modification procedures of ground motions which are used for nonlinear dynamic analyses were adopted. However, its practical applications are still limited due to the lack of literatures. This paper introduces case studies which used site-response analyses to select and modify ground motions for nonlinear dynamic analyses. Based on the case studies, design criterion for site-response analyses were reviewed thoroughly in the viewpoint of practical applications. It was found that design requirements related with bedrock motions are too conservative that ground motions are selected and modified in the excessive manner. It is especially true for low-rise building structures with period ranges including acceleration-sensitive regions. Even though surface motions have shown appropriate responses, such building structures have to re-select and re-modify ground motions based on pre-analysis procedures rather than post-ones according to the current seismic design code. Also, it was observed that building structures with soft soils under strong ground motions need more comprehensive investigations on soil properties and efficient analysis methods in order to perform site-response analyses. This is due to the fact that lack of reliabilities on soil properties and analysis methods could result in unstable site-responses.