• Title/Summary/Keyword: 지지 성능

Search Result 809, Processing Time 0.035 seconds

Online Association Rule Technique for Web Access Log (웹 로그에 대한 온라인 연관 규칙 기법)

  • Park, Eun-Joo;Kwon, Hye-Ryun;Kim, Eun-Joo;Lee, Yill-Byung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2001.04a
    • /
    • pp.333-336
    • /
    • 2001
  • 본 논문에서는 웹에서 온라인상으로 발생되는 기록 데이터들의 연관 규칙을 구성할 수 있는 효과적인 기법을 제안하고 있다. 기본적으로, 온라인상에서 연관 규칙을 추출하는 방법은 Carma 알고리즘을 바탕으로 하였기 때문에 최대 데이터의 scan 회수를 2회로 유지하였다. 각 사용자가 방문한 웹 사이트의 수에 대하여 정규 분포를 따르는 가중치를 Phase I 알고리즘의 지지도 관련 변수에 영향을 줌으로써, lattice 의 크기를 조절하는 요소로 사용하여 처리 시간을 단축시키고 있다. 기존의 Carma 알고리즘과 제안하는 W-Carma(Weighted-Carma) 알고리즘과 처리 시간을 비교하였으며, 대량의 데이터일 경우 좋은 성능을 보이고 있다.

  • PDF

Mining Association Rules on Significant Rare Data using Relative Support (상대 지지도를 이용한 의미 있는 희소 항목에 대한 연관 규칙 탐사 기법)

  • Ha, Dan-Shim;Hwang, Bu-Hyun
    • Journal of KIISE:Databases
    • /
    • v.28 no.4
    • /
    • pp.577-586
    • /
    • 2001
  • Recently data mining, which is analyzing the stored data and discovering potential knowledge and information in large database is a key research topic in database research data In this paper, we study methods of discovering association rules which are one of data mining techniques. And we propose a technique of discovering association rules using the relative support to consider significant rare data which have the high relative support among some data. And we compare and evaluate existing methods and the proposed method of discovering association rules for discovering significant rare data.

  • PDF

Initial Analysis of Positive/Negative Opinion Classification of Twitter Data Using Naïve Bayes and SVM (Naïve Bayes와 SVM을 이용한 트위터 데이터의 긍정/부정 의견 자동분류 결과 분석)

  • Cho, Heeryon;Kim, Songkuk
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.04a
    • /
    • pp.406-409
    • /
    • 2012
  • '나꼼수 비키니 시위'에 대 긍정적(지지), 부정적(비판) 의견을 담은 트위터 데이터를, 단어의 출현에 주목하여 Naïve Bayes (NB)와 Support Vector Machine (SVM)을 적용하여 자동분류 한 결과, NB가 75.98%로, 73.65%인 SVM 보다 약간 더 나은 성능을 보였다. 본 실험을 통해, 기계학습을 이용한 대중의견(opinion) 자동분류 시스템을 실용화할 때의 고려사항에 대해 살펴 본다.

Classification of V.O.C in The Door-to-Door Delivery Service Using Machine Learning Techniques (기계학습을 이용한 택배 고객의 소리 분류)

  • Hong, Seong-Yun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.04a
    • /
    • pp.329-332
    • /
    • 2012
  • 국내 택배시장 규모는 매출 3조원 이상, 물량 13 억 상자 이상을 처리하고 있다. 2000년 6천억원에서 불과 10년 사이에 500% 이상 확대되었다. 그에 반해 소비자들의 불만 역시 증가하였다. 따라서 현재의 수작업 VOC 분류 방식으로는 적정한 대응에 한계가 있을 수 밖에 없다. 이 논문에서는 효율적인 택배불만 처리를 위해서 불만의 종류와 정도를 기계학습을 이용하여 자동분류 하는 과정 및 결과를 기술한다. 약 93,000건의 VOC(voice of customer)를 대상으로 학습 데이터를 구축하고 여러 자질 선택 기법을 비교하였으며, 기존의 다양한 문서 자동 분류 방법들을 적용해 보았다. 실험결과 지지벡터기계가 가장 좋은 성능을 보였고, 각각의 F-measure 값은 불만의 정도는 83.1%, 불만의 종류는 75.9% 로 측정되었다.

A Comparative Study on Deep Learning Models for Scaffold Defect Detection (인공지지체 불량 검출을 위한 딥러닝 모델 성능 비교에 관한 연구)

  • Lee, Song-Yeon;Huh, Yong Jeong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.2
    • /
    • pp.109-114
    • /
    • 2021
  • When we inspect scaffold defect using sight, inspecting performance is decrease and inspecting time is increase. We need for automatically scaffold defect detection method to increase detection accuracy and reduce detection times. In this paper. We produced scaffold defect classification models using densenet, alexnet, vggnet algorithms based on CNN. We photographed scaffold using multi dimension camera. We learned scaffold defect classification model using photographed scaffold images. We evaluated the scaffold defect classification accuracy of each models. As result of evaluation, the defect classification performance using densenet algorithm was at 99.1%. The defect classification performance using VGGnet algorithm was at 98.3%. The defect classification performance using Alexnet algorithm was at 96.8%. We were able to quantitatively compare defect classification performance of three type algorithms based on CNN.

Performance Comparison of Scaffold Defect Detection Model by Parameters (파라미터에 따른 인공지지체 불량 탐지 모델의 성능 비교)

  • Song Yeon Lee;Yong Jeong Huh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.1
    • /
    • pp.54-58
    • /
    • 2023
  • In this study, we compared the detection accuracy of the parameters of the scaffold failure detection model. A detection algorithm based on convolutional neural network was used to construct a failure detection model for scaffold. The parameter properties of the model were changed and the results were quantitatively verified. The detection accuracy of the model for each parameter was compared and the parameter with the highest accuracy was identified. We found that the activation function has a significant impact on the detection accuracy, which is 98% for softmax.

  • PDF

Design and implementation of a classification method for time series body sensor data (시계열 인체 센서 데이터의 분류화 기법의 설계와 구현)

  • Han, Xiaoyue;Maeng, Boyeon;Lee, Minsoo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.140-141
    • /
    • 2010
  • 무선 통신의 발달과 센서 장비의 소형화로 인하여 다양한 인체 센서들이 개발되고 있으며 이에 따라 이들 인체 센서로부터 생성되는 데이터를 누적하여 분석 및 예측을 해야 할 필요성이 증가하고 있다. 본 연구에서는 누적된 인체 센서 데이터에 대한 분류화 기법을 제안하여 구현하고 성능을 검증하였다. 분류화 기법은 인체 센서 데이터에 잘 적용될 수 있는 지지벡터 기계를 활용하여 구현하였다. 인체 센서 데이터의 대표패턴 정의와 실험을 위한 잡음 생성을 통하여 분류화 정확도를 높일 수 있도록 실험을 설계하였고 다양한 설정 변수에서도 기법을 실험하여 빠르고 정확한 기법을 설계 및 구현하였다.

Classification method for time series blood pressure sensor data using Scalar Vector Machine (스칼라 벡터 머신 기법을 활용한 시계열 혈압 센서 데이터의 분류 기법)

  • Han, Xiaoyue;Maeng, Bo-Yeon;Lee, Min-Soo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.04a
    • /
    • pp.1234-1236
    • /
    • 2011
  • 최근 고령화 사회가 도래함에 따라 복지 사회 실현을 위해 의료기술에 IT 기술을 접목하여 인간의 건강을 효과적으로 유지하려는 요구가 증가하였다. 이러한 요구의 증가로 인해 원격으로 건강 상태를 검진하여 질병을 방지하거나 만성적인 환자의 건강상태를 장기적으로 관찰할 수 있는 IT 기술에 대한 연구가 활발하게 진행되고 있다. 본 연구에서는 누적된 인체 센서 데이터에 대한 분류화 기법을 제안하여 구현하고 성능을 검증하였다. 분류화 기법은 인체 센서 데이터에 잘 적용될 수 있는 지지벡터 기계를 활용하여 구현하였다. 인체 센서 데이터의 대표패턴 정의와 실험을 위한 잡음 생성을 통하여 분류화 정확도를 높일 수 있도록 실험을 설계하였고 다양한 설정 변수에서도 기법을 실험하여 빠르고 정확한 기법을 설계 및 구현하였다.

Performance Comparison of Deep Learning Model Loss Function for Scaffold Defect Detection (인공지지체 불량 검출을 위한 딥러닝 모델 손실 함수의 성능 비교)

  • Song Yeon Lee;Yong Jeong Huh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.2
    • /
    • pp.40-44
    • /
    • 2023
  • The defect detection based on deep learning requires minimal loss and high accuracy to pinpoint product defects. In this paper, we confirm the loss rate of deep learning training based on disc-shaped artificial scaffold images. It is intended to compare the performance of Cross-Entropy functions used in object detection algorithms. The model was constructed using normal, defective artificial scaffold images and category cross entropy and sparse category cross entropy. The data was repeatedly learned five times using each loss function. The average loss rate, average accuracy, final loss rate, and final accuracy according to the loss function were confirmed.

  • PDF

Design of an Automatic Waste Recognition System Based on YOLOv5 (YOLOv5 기반의 폐기물 자동인식 시스템 설계)

  • Tae-Woong Shim;Do-Yoon Kim;Jong-In Choi;Kwang-Young Park
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.558-559
    • /
    • 2023
  • 지구온난화와 기후변화로 인해 전세계적으로 기업, 정부는 ESG(Environmental, Social and Corporate Governance)에 관심을 가지고 있다. 이에 따라 폐기물 분류 및 재활용에도 관심을 가지고 있지만 국내 외 폐기물 분류는 정확하게 이루어 지지 않고 있다. 이에 본 논문에서는 객체 인식의 대표 모델인 YOLOv5 를 이용해 폐기물 중 대표인 페트병 탐지 시스템을 제안한다. 제안하는 시스템은 페트병 사이 다른 폐기물을 감지해 내고 페트병 중 유색과 투명 페트병을 분류를 한다. 향후, 제안하는 시스템의 성능 평가가 필요하고 다른 폐기물로 확장이 필요하다.