• Title/Summary/Keyword: 지지구조물

Search Result 736, Processing Time 0.026 seconds

Case Studies on Ground Improvement by High Pressure Jet Grouting(I) Effect in the Improvement of Bearing Capacity for Foundation Ground (고압분사주입공법에 의한 지반개량사례연구(I) -구조물 기초지반의 지지력증대효과)

  • Yun, Jung-Man;Hong, Won-Pyo;Yu, Seung-Gyeong
    • Geotechnical Engineering
    • /
    • v.12 no.4
    • /
    • pp.33-46
    • /
    • 1996
  • When structures are constructed in ground with poor bearing capacity, deformation of ground may induce foundation settlements and cracks of structures. Recently, high pressure jet grouting is widely used to improve the engineering properties of such foundation. Sometimes, the grouting columns are built in the ground by jet grouting method. They are used as in -situ piles to increase the bearing capacity of existing foundation. In this paper, as for the grouting columns built in ground by high pressure jet grouting with double tube rod, the effects on reinforcement and bearing capacity of ground are investigated. A series of laboratory tests has been performed on the specimens sampled from the grouting columns and a pile load test has been performed on a grouting column. The test results show that high pressure jet grouting has a sufficient effect on reinforcement of ground and restraint of settlement of structure.

  • PDF

Seismic Behaviour of Eco-BELT System and Seismic Effectiveness of T-shaped Deadman Considering Soil-Structure Interface Based on Dynamic Numerical Analysis (흙-구조물 접촉면을 고려한 친환경 옹벽 구조물의 지진시 거동 및 T형 후방지지물의 보강효과에 대한 동해석 분석연구)

  • Kwak, Chang-Won;Park, Inn-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.8
    • /
    • pp.37-49
    • /
    • 2021
  • A retaining wall system is widely constructed civil structure to maximize the effectiveness of practical use of the land. Recently, the technology which is more eco-friendly and owns seismic stability of the retaining wall system becomes important. In this study, an Eco-BELT system using natural rocks as the front wall is introduced and the seismic characteristics of the Eco-BELT system are analyzed based on 2 and 3 dimensional numerical analysis. The soil-structure interface comprises between backfill soil and natural rocks are considered. The relative density is mainly considered to influence the seismic behavior of Eco-BELT system, and T-shaped deadman is also considered to judge the increase of seismic stability. As a result, lateral displacement of the wall decreases 29.5% in maximum under 90% of relative density and decreases 21.2 to 21.9% with T-shaped deadman, therefore, the seismic effectiveness of T-shaped deadman and increasing relative density of backfill are verified by numerical analysis.

A case Study on Settlement and Bearing Capacity Improvement for Soft Clay Applying the Reinforcement Method using Stabilized Soil (고화처리공법이 적용된 연약점토지반의 침하 및 지지력 개선에 관한 사례연구)

  • Ki, Wan-Seo;Kim, Sun-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3923-3930
    • /
    • 2014
  • In this study, the physical and dynamic characteristics of soil were analyzed by selecting 3 sections as research subjects among road and structure construction sections in the construction site of the Gwangyang ${\bigcirc}{\bigcirc}$ industry area, and conducted consolidation analysis and bearing capacity assessments through Midas-GTS according to the construction conditions of the structures and section conditions of reinforcement using stabilized soil. The effects of improving the settlement and bearing capacity according to the improved effects of the stability and sections of reinforcement using stabilized soil in applying the reinforcement method using stabilized soil were analyzed as a solution for improving the settlement and bearing capacity of soft clay for constructing roads and structures. The improvement effects of the settlement and bearing capacity were outstanding when the reinforcement method using stabilized soil to the soft clay was applied. After applying the reinforcement method using stabilized soil, the holdback effect of the consolidation settlement was excellent by decreasing the volume of the consolidation settlement from a minimum of 53% to a maximum of 82%. When the width of the reinforcement using stabilized soil was twice the width of the constructed structure, it was found that the holdback effect of the consolidation settlement ranged from 1% to 7% through the width of reinforcement using stabilized soil. In addition, when applying reinforcement more than 6m in width and 1m in depth using stabilized soil, it was found that the increase in the allowable bearing capacity was 2.3 to 3.3 times more than that before applying the reinforcement, which suggests that the increase in bearing capacity by applying the reinforcement method using stabilized soil was significant.

Partial Safety Factors for Geotechnical Bearing Capacity of Port Structures (항만구조물 지반지지력 산정을 위한 부분안전계수 결정)

  • Yoon, Gil-Lim;Yoon, Yeo-Won;Kim, Hong-Yeon;Kim, Baeck-Oon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.3
    • /
    • pp.156-162
    • /
    • 2010
  • When eccentric or inclined load acts on foundation of the port & harbor structures, partial safety factors of bearing capacity limit state were estimated using reliability analysis. Current Korean technical standards of port and harbor structures recommend to estimate the geotechnical bearing capacity using the simplified Bishop method. In practice, however, simple method of comparing ground reaction resistance with allowable bearing capacity has been mostly used by design engineers. While the simple method gives just one number fixed but somewhat convenient, it could not consider the uncertainty of soil properties depending on site by site. Thus, in this paper, partial safety factors for each design variable were determined so that designers do perform reliability-based level 1 design for bearing capacity limit state. For these, reliability index and their sensitivities were gained throughout the first order reliability method(FORM), and the variability of the random variables was also considered. In order to verify partial safety factors determined here, a comparison with foreign design codes was carried out and were found to be reasonable in practical design.

The Effect of Dynamic Behavior on Changing Pile Cap Size of Pile Group in Sandy Soil (사질토 지반에서 말뚝 캡 크기가 무리말뚝의 동적거동에 미치는 영향)

  • Lee, Hyunkun;Ahn, Kwangkuk;Kang, Hongsig
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.8
    • /
    • pp.5-12
    • /
    • 2019
  • A pile group, that consists of several piles connected by a pile cap, is used as the superstructure. The pile supports vertical and horizontal load to design the pile group, but the effect of bearing capacity of the pile cap has not considered. Various researches have been conducted to reflect the effect of bearing capacity of the pile cap in order to reduce the amount of piles in the range of the stability under the vertical load of the superstructure. However, the effect of bearing capacity under the horizontal seismic load has not been studied adequately. Therefore, a shaking table test was carried out with different-sized pile caps that support the superstructure in this study. This test was to verify the influence of the size of the pile cap in the group pile under the horizontal load. The result shows that the size of the pile cap affects to the dynamic behavior of the superstructure and the pile group. Also, the bigger size of the pile group makes the larger constraint effect of ground, and it results that both the ground and the pile moves as a whole.

Evaluation of Sleeper Supporting Condition for Railway Ballasted Track using Modal Test Technique (모달시험기법을 이용한 자갈궤도의 침목지지조건평가)

  • Jung-Youl Choi;Tae-Jung Yoon;Jee-Seung Chung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.537-542
    • /
    • 2023
  • Recently, deformation of operating railway structures has occurred due to adjacent excavation works such as new structures and utility tunnel expansion concentrated around downtown areas. However, most of them are focused on structural review, repair and reinforcement of structures. A review of the Track is insufficient. In particular, in the case of the gravel track on the earthwork subgrade, the subgrade and the ballast are not solidified. A slight level of deformation can cause ballast relaxation. Sleeper support conditions may lead to unstable conditions. Sufficient safety must be ensured. In addition, it is a track type with a high risk of train derailment due to unstable support conditions. In this study, the correlation between the deformation characteristics of gravel tracks and track support performance according to subgrade deformation is experimentally and analytically verified. In addition, an evaluation technique that can evaluate the condition of the gravel track and the track support stiffness is presented.

Steady Drift Forces on Very Large Offshore Structures Supported by Multiple Floating Bodies in Waves(II) (다수의 부체로 지지된 초대형 해양구조물에 작용하는 정상표류력(II))

  • J.S. Goo;H.J. Jo;S.Y. Hong;C.H. Lee;K.T. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.4
    • /
    • pp.150-161
    • /
    • 1996
  • A numerical procedure is described for predicting steady drift forces on very large offshore structures supported by a large number of the floating bodies of arbitrary shape dimensional source distributing method, the wave interaction theory, the far-field method of using momentum theory and the finite element method for structurally treating the space frame elements. Numerical results are compared with the experimental or numerical ones, which are obtained in the literature, of steady drift forces on a offshore structure supported by the 33(3 by 11) floating composite vertical cylinders in waves. The results of comparison confirmed the validity of the proposed approach.

  • PDF

Structural Health Monitoring Technique for Tripod Support Structure of Offshore Wind Turbine (해상풍력터빈 트라이포드 지지구조물의 건전성 모니터링 기법)

  • Lee, Jong-Won
    • Journal of Wind Energy
    • /
    • v.9 no.4
    • /
    • pp.16-23
    • /
    • 2018
  • A damage detection method for the tripod support structure of offshore wind turbines is presented for structural health monitoring. A finite element model of a prototype tripod support structure is established and the modal properties are calculated. The degree and location of the damage are estimated based on the neural network technique using the changes of natural frequencies and mode shape due to the damage. The stress distribution occurring in the support structure is obtained by a dynamic analysis for the wind turbine system to select the output data of the neural network. The natural frequencies and mode shapes for 36 possible damage scenarios were used for the input data of the learned neural network for damage assessment. The estimated damages agreed reasonably well with the accurate ones. The presented method could be effectively applied for damage detection and structural health monitoring of various types of support structures of offshore wind turbines.

A Group Pile Effect on Changing Size of Pile Cap in Group Pile under Sand Soil in Earthquake (지진 시 사질토 지반에 근입된 무리말뚝의 말뚝 캡 크기가 무리말뚝 효과에 미치는 영향)

  • Lee, Hyunkun;Ahn, Kwangkuk;Kang, Hongsig
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.10
    • /
    • pp.39-46
    • /
    • 2019
  • The interaction between the ground and structures should be considered for seismic design of group piles supporting the superstructure. The p-y curve has been used widely for the analysis of nonlinear relationship between the ground and structures, and various researches have conducted to apply the dynamic p-y curve for seismic design of group piles. This curve considers the interaction between the ground and structures under the dynamic load such as an earthquake. However the supported effect by the pile cap and the interaction by inertia behavior of superstructures. Therefore, the shaking table test was conducted to verify the effect of the change of the pile cap in group piles supporting superstructures embedded in sandy soil. The test condition is that the arrangement and distance between centers of piles are fixed and the length of the pile cap is changed for various distances between the pile cap side and the pile center. The result shows that the distance between the pile cap side and the pile center have an effect on the dynamic p-y curve and the effect of group piles.

Optical mounting method based on current astronomical space missions (최근 천문우주미션에 기초한 광학계 마운팅 방법)

  • Moon, Bongkon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.48.5-49
    • /
    • 2018
  • 우주를 관측하기 위한 대부분의 천문학 미션을 위한 인공위성은 광학계를 가지는 망원경 구조물과 관측기기를 포함하고 있다. 망원경 구조물은 작은 렌즈 광학계에서 미터급의 대형 미러 광학계에 이르기까지 다양하며, 관측기기에 포함된 광학계는 그 용도에 따라서 다양한 형태를 보여준다. 이러한 광학계는 광기계 설계를 통한 광학계 지지구조물을 필수적으로 설계하며, 이 광기계 설계는 광학적 성능을 만족시키면서 광학계가 발사체의 진동, 충격 및 열진공의 우주환경을 모두 견뎌낼 수 있도록 설계해야만 한다. 이 발표에서는 최근 한국에서 수행한 천문우주 미션 경험을 바탕으로 실제 적용된 광학계 마운팅 기법을 사례별로 정리하고 그 연구결과를 소개하고자 한다.

  • PDF