• Title/Summary/Keyword: 지중열교환기

Search Result 240, Processing Time 0.025 seconds

An Experimental Study on the Performance of Semi-Closed Loop Ground Heat Exchanger (반밀폐형 지중열교환기 성능에 관한 실험적 연구)

  • Kim, Ook-Joong;Yeom, Han-Kil;Lee, Chun-Woo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.542-545
    • /
    • 2007
  • A semi-closed loop ground heat exchanger is proposed and its performance is compared through the measuring the effective thermal conductivity of the ground. In-situ tests based on the line source model are carried out to evaluate the thermal characteristics of each ground heat exchanger which has different penetration water flow rate. The test results show the increasing effective thermal conductivity of ground as the penetration water flow rate(PWFR) is increased. Therefore, the higher thermal performance of the proposed semi-closed ground heat exchanger can be expected.

  • PDF

A Experimental Study of Horizontal Geothermal Heat Exchanger System about Total Enthalpy Change (수평형 지중열교환기의 전열량 변화에 대한 실험적 연구)

  • Cho, SungWoo;Ihm, PyeongChan
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.10 no.4
    • /
    • pp.1-7
    • /
    • 2014
  • This paper is performed to investigate of cooling effect and total enthalpy variation on EAHES(Earth-to-Air Heat Exchanger System) that is buried 3m depth and 60m length. Using EAHES, the reduction of the sensible heat is obviously but latent heat is showed increased trend. Although the outdoor average latent heat accounts for 53.2% of total enthalpy, latent heat of the exit air from EAHES was raised as 58%. For improving cooling effect of EAHES, it has to considered that how to remove the latent heat from EAHES.

Predicting the Effective Thermal Conductivity of Some Sand-Water Mixtures Used for Backfilling Materials of Ground Heat Exchanger (지중열교환기 뒤채움재로 사용되는 모래-물 혼합물의 열전도도 예측)

  • Sohn, Byong-Hu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.9
    • /
    • pp.614-623
    • /
    • 2008
  • This paper presents the results of a laboratory study on the thermal conductivity of and(silica, quartzite, limestone, sandstone, granite and two masonry sands)-water mixtures used for ground heat exchanger backfilling materials. Nearly 260 tests were performed in a thermal conductivity measuring system to characterize the relationships between the thermal conductivity of mixtures and the water content. The experimental results show hat the thermal conductivity of mixtures increases with increasing dry density and with increasing water content. The most widely used empirical prediction models for thermal conductivity of soils were found inappropriate to estimate the thermal conductivity of unsaturated sand-water mixtures. An improved model using an exponential relationship to compute the thermal conductivity of dry sands and empirical relationship to assess the normalized thermal conductivity of unsaturated sand-water mixtures is presented.

A Study on Improving the Efficiency of Ground Heat Exchanger (지중열교환기 성능 향상에 관한 연구)

  • Kim, Ook-Joong;Lee, Kong-Hoon;Kim, Min-Su
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3142-3147
    • /
    • 2008
  • A simple transient simulation of ground source heat pump system was carried out to investigate the effects of ground thermal conductivity on its performance. The TRNSYS code with a simple water to water heat pump model was used to compare the COP variation of the system. A new ground heat exchanger called by semi-closed loop was proposed and constructed in the real site. The effective thermal conductivity was measured using the test equipment developed by according to the line source model. The simulation results showed that highly efficient thermal conductivity of the grout material could increase the performance of the heat pump system very well. And the new ground heat exchanger showed the increased effective thermal conductivity as the penetration water flow rate(PWFR) was increased. Therefore, the performance improvement of the heat pump system using the proposed ground heat exchanger can be expected.

  • PDF

A Study on Thermal Conductivity Properties of Ground Heat Exchangers for GSHP systems (지열냉난방시스템 수직형 지중열교환기 그라우트의 열적 특성에 관한 연구)

  • Baek, Sung-Kwon;Jeon, Joong-Kyu;An, Hyung-Jun
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.429-433
    • /
    • 2007
  • Cement mortar and concrete can be used as grouts but problems regarding shrinkage and the discord of coefficients of thermal expansion between grouts and HDPE pipes has to be solved. Thermal conductivities of wet condition two times larger than those of dry condition, except for pure cement mortar. The addition of sand into the cement grouts greatly increases the thermal conductivity. The addition of bentonite into the cement grouts reduces thermal conductivity thus reducing the density. Bentonite grouting must be used only below the groundwater table since bentonite grouts possesses high shrinkage property in dry condition. The addition of sand prevents the shrinkage of bentonite grouts. Bentonite manufactured in Korea can be used since they possess similar thermal conductivities with imported products. The addition of sand into the bentonite grouts greatly increases the thermal conductivity.

  • PDF

연구원_2015 연구과제 ⑤ - 대용량 지열설비 이용을 위한 개방형 지중열교환기 용량 설계 Tool 개발

  • Ryu, Hyeong-Gyu;Yun, Hui-Won;Choe, Seung-Hyeok
    • 월간 기계설비
    • /
    • s.309
    • /
    • pp.48-50
    • /
    • 2016
  • 대한기계설비산업연구원(원장 이언구)은 지난해 4월 연구심의위원회에서 선정된 ${\triangle}$기계설비건설업 동향분석을 위한 기초연구 ${\triangle}$기계설비건설업체의 부도예측 모형 연구 ${\triangle}$기계설비건설공사 시공상세도면 작성비 산정기준 연구 ${\triangle}$플랜트 건설현장 외국인력 고용 개선방안 ${\triangle}$녹색기술 기준에 근거한 연구과제 도출을 위한 기초연구 ${\triangle}$대용량 지열설비 이용을 위한 지중열교환기 용량 설계 툴 개발 ${\triangle}$기계설비배관 및 장비 단열 기준 연구 등의 기본과제와 외부기관과 공동으로 수행한 ${\triangle}$플랜트 건설현장 외국인력 고용 개선방안 ${\triangle}$기계설비건설업 관련법규 개선방안 연구를 추진했다. 본지는 지난 2월호부터 연구결과 요약 보고서를 연재하고 있다.

  • PDF

Thermal Conductivity Measurement of Sand-Water Mixtures Used for Backfilling Materials of Vertical Boreholes or Horizontal Trenches (지중열교환기 수직 보어홀 및 수평 트렌치 뒤채움재로서 모래-물 혼합물의 열전도도 측정)

  • Sohn, Byong-Hu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.5
    • /
    • pp.342-350
    • /
    • 2008
  • This paper presents the results of a laboratory study on the thermal conductivity of sand (silica, quartzite, limestone and masonry sand)-water mixtures used in ground heat exchanger backfilling materials. Nearly 150 tests were performed in a thermal conductivity measuring system (TPSYS02) to characterize the relationships between the thermal conductivity of mixtures and the water content. The results show that the thermal conductivity of mixtures increases with increasing dry density and with increasing water content. The results also show that for constant water contents and a dry density value, the thermal conductivity of mixtures increases with increasing thermal conductivity of solid particles. The measurement results were also compared with the most widely used empirical prediction models for the thermal conductivity of soils.

Thermal Property Measurement of Bentonite-Based Grouts and Their Effects on Design Length of Vertical Ground Heat Exchanger (벤토나이트 그라우트의 열물성 측정 및 열물성이 수직 지중열교환기 설계 길이에 미치는 영향)

  • Sohn, Byonghu
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.15 no.2
    • /
    • pp.1-9
    • /
    • 2019
  • In a ground-source heat pump (GSHP) system, a vertical ground heat exchanger (GHE) is widely accepted due to a higher thermal performance. In the vertical GHE, grout (also called grouting material) plays an important role in the heat transfer performance and the initial installation cost of the GHE. Bentonite-based grout has been used in practice because of its high swelling potential and low hydraulic conductivity. This study evaluated the thermo-physical properties of the bentonite-based grouts through lab-scale measurements. In addition, we conducted performance simulation to analyze the effect of mixed ratio of grouts on the design length and thermal performance of the vertical GHE. The simulation results show that thermally-enhanced grouts improve the heat transfer performance of the vertical GHE and thus reduce the design length of GHE pipe.

Evaluation of Performance of Grouts and Pipe Sections for Closed-loop Vertical Ground Heat Exchanger by In-situ Thermal Response Test (현장 열응답 시험을 통한 수직 밀폐형 지중열교환기용 그라우트와 열교환 파이프 단면의 성능 평가)

  • Lee, Chul-Ho;Park, Moon-Seo;Min, Sun-Hong;Choi, Hang-Seok;Sohn, Byong-Hu
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.7
    • /
    • pp.93-106
    • /
    • 2010
  • In performing a series of in-situ thermal response tests, the effective thermal conductivities of six vertical closed-loop ground heat exchangers were experimentally evaluated and compared one another, which were constructed in a test bed in Wonju. To compare thermal efficiency of the ground heat exchangers in field, the six boreholes were constructed with different construction conditions: grouting materials (cement vs. bentonite), different additives (silica sand vs. graphite) and the shape of pipe-sections (general U-loop type vs. 3 pipe-type). From the test results, it can be concluded that cement grouting has a higher effective thermal conductivity than bentonite grouting, and the efficiency of graphite better performs than silica sand as a thermally-enhancing addictive. In addition, a new 3 pipe-type heat exchanger provides less thermal interference between the inlet and outlet pipe than the conventional U-loop type heat exchanger, which results in superior thermal performance. Based on the results from the in-situ thermal response tests, a series of economic analyses have been made to show the applicability of the new addictives and 3 pipe-type heat exchanger.