• Title/Summary/Keyword: 지중매설

Search Result 190, Processing Time 0.025 seconds

Pipe Stiffness Prediction of Buried Flexible Pipes (지중매설 연성관의 관강성 추정)

  • Park, Joon-Seok;Kim, Sun-Hee;Kim, Eung-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.1
    • /
    • pp.13-20
    • /
    • 2012
  • In this paper, we present the result of an investigation pertaining to the pipe stiffness of buried flexible pipes. Pipe stiffness (PS) formula for the parallel plate loading condition is derived based on the elasticity theory. Vertical and horizontal displacements are also derived. Vertical deflection is always larger than the horizontal deflection because some of energy due to overburden load is stored in the pipe but the difference is negligibly small. In the study, mechanical properties of the flexible pipes produced in the domestic manufacturer are tested and the results are reported in this paper. In addition, pipe stiffness is determined by the parallel plate loading tests and the finite element analysis. The difference between test and analysis is less than 14% although there are significant variations in the mechanical properties of the pipe material. Therefore, it was found that the finite element analysis can be used to predict the pipe stiffness instead of conducting parallel plate loading test.

Methodology to Measure Stress Within Sand Ground Using Force Sensing Resistors (박막형 압전 센서를 활용한 사질토 지반 지중 응력 측정 방법론)

  • Kim, Dong Kyun;Woo, Sang Inn
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.2
    • /
    • pp.115-123
    • /
    • 2024
  • Stress is an invisible physical quantity, necessitating the use of earth pressure cells for its measurement within theground. Traditional strain-gauge type earth pressure cells, due to their rigidity, can distribute stress within the ground and subsequently affect the accuracy of earth pressure measurements. In contrast, force sensing resistors are thin and flexible, enabling the minimization of stress disturbance when measuring stress within the ground. This study developed a system that utilizes force sensing resistors to measure ground stress. It involved constructing a soil chamber for calibrating the force sensing resistors, assessing the variability of measurements from resistors embedded in sand ground, and verifying the attachment of pucks to the sensing area of the resistors.

Analysis of Stray Current Interference between Underground Pipelines and DC Electric Railways (매설배관과 직류전기철도의 표유전류 간섭분석)

  • Ha Y.C.;Bae J.H.;Ha T.H.;Lee H.G.;Kim D.E.
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.3 s.32
    • /
    • pp.41-47
    • /
    • 2006
  • When an underground pipeline runs parallel with DC electric railways, it suffers from electrolytic corrosion caused by the stray current leaked from the railway negative returns, i.e., the rails. Perforation due to the electrolytic corrosion may bring about large-scale accidents even under cathodically protected condition. Traditionally, drainage bonding methods have been widely used as a mitigation method for stray current interference. In particular, the increased adoption of forced drainage method to gas pipelines makes the interference much more sophisticated. In this paper, we analyze the electric interference between pipelines and railways from the results of field investigation carried out in Seoul and Busan.

  • PDF

A Development of Automation System and a Way to use Solar Energy System Efficiently in Greenhouse(1) - Study on temperature variation of soil heating in greenhouse - (시설원예용 태양열 시스템의 효율적 이용과 자동화 장치개발(1) - 시설재배시 지중가온의 온도변화 연구 -)

  • 김진현;김철수;명병수;최중섭;구건효;김태욱
    • Journal of Bio-Environment Control
    • /
    • v.7 no.1
    • /
    • pp.15-24
    • /
    • 1998
  • The greenhouse temperature controls in general have been managed by the above-ground part environment, But the temperature of root zone was known very important factor for the 9rofth and the yield of vegetables in greenhouse. The purpose of this study is to develop a good method for cultivation using solar energy which can apply warming soil and to develop the greenhouse soil temperature automatic control system. Followings are summary of this study:1 When the greenhouse inner temperature changes were about 24$^{\circ}C$ during a day in October, the temperature of non-warmed soil was differenced 6$^{\circ}C$ in the depth 10cm and 3$^{\circ}C$ in the depth 20cm. 2. When water supply temperature was kept at 40, 50 and 6$0^{\circ}C$, the lowest soil temperature in the depth of 10cm is 2$0^{\circ}C$ and that of 20cm was 23$^{\circ}C$. and when the water supply temperature was over 4$0^{\circ}C$, the space heating temperature did not affect the temperature variation of soil. 3. In comparison with conditions of the warmed and non-warmed soil, when the water supply temperature is 28$^{\circ}C$, soil temperatures had the high temperature of 4$0^{\circ}C$~7$^{\circ}C$ in the depth of 10cm to 20 cm. 4. The line of boundary area was appeared in the depth of 15~20cm, 13~19cm and 12~17cm. when the water supply temperature was 4$0^{\circ}C$, 5$0^{\circ}C$ and 6$0^{\circ}C$. 5. When th inner greenhouse air temperature is maintained over 11$^{\circ}C$ and the water supply temperature is supported 28$^{\circ}C$, the lowest temperature is kept up over 2$0^{\circ}C$.

  • PDF

A Development of Automation system and a way to use Solar Energy System Efficiently in Greenhouse(2) - Study on improvement of growth and yield of a cucumber in soil heating - (시설원예 태양열 시스템의 효율적 이용과 자동화 장치개발(2) -지중가온에 의한 오이 생육 및 수량성 향상에 관한 연구-)

  • 김진현;오중열;구건효;김태욱
    • Journal of Bio-Environment Control
    • /
    • v.7 no.1
    • /
    • pp.25-33
    • /
    • 1998
  • Root zone temperature have influenced on protected cultivation in winter season. Especially root zone temperature is acted on limiting factor in crop cultivation. This study was conducted to obtain optimum temperature of root zone in Protected cultivation Root zone was warmed by heated water($28^{\circ}C$) flowing through the PPC pipe(${\phi}15$) buried depth 40 cm. And the flowing water was heated by solar system. Minimum air temperature during night time was set at $14^{\circ}C$ and maximum air temperature during day time was set at $28~30^{\circ}C$ the growing period of cucumber was from Nov. 6, 1996 to Jan. 30, 1997. The results are summarized as follows. 1. Average soil temperature at 15~20 cm depth was $22^{\circ}C$ at warming plots, $17~18^{\circ}C$ at non-warming plots 2. Early growth in leaf length, stem diameter, number of leaves and leaf area for 30 days after planting were accelerated by root zone warming. Especially, the grawing rate of soil warming plots was higher 27% in leaf length, 51% in leaf number, 150% in leaf area than non-warming Plots. Above-ground and underground part of warming plots was higher 117%, 56% than non-warming plots. 3. In total yield analysis, number of fruits were 614 in soil warming and 313 in non-warming plots. In the result, total yield of soil warming plots was increased with 196% than non-warming plots. 3. In total yield analysis. number of fruits were 614 in soil warming and 313 in non-warming plots. In the result. total yield of soil warming plots was increased with 196% than non-warming plots.

  • PDF

Development of Thermal-Hydro Pipe Element for Ground Heat Exchange System (지중 열교환 시스템을 위한 열-수리 파이프 요소의 개발)

  • Shin, Ho-Sung;Lee, Seung-Rae
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.8
    • /
    • pp.65-73
    • /
    • 2013
  • Ground-coupled heat pump system has attracted attention as a promising renewable energy technology due to its improving energy efficiency and eco-friendly mechanism for space cooling and heating. Pipes buried in the ground play a role of direct thermal interaction between circulating fluid inside the pipe and surrounding soils in the geothermal exchange system. However, both complexities of turbulent flow coupling thermal-hydraulic phenomena and very long aspect ratio of the pipe make it difficult to model the heat exchange system directly. Energy balance for fluid flow inside the pipe was derived to model thermal-hydraulic phenomena, and one-dimensional pipe element was proposed through Galerkin formation and time integration of the equation. Developed element is combined to pre-developed FEM code for THM phenomena in porous media. Numerical results of Thermal Response Test showed that line-source model overestimates equivalent thermal conductivity of surrounding soils due to thermal interaction between adjacent pipes and finite length of the pipe. Thus, inverse analysis for the TRT simulation was conducted to present optimal transformation matrix with utmost convergence.

Thermal Resistant Characteristics of Flowable Backfill Materials Using Surplus Soil for Underground Power Utilities (굴착잔토를 재활용한 지중 전력케이블 유동성 뒤채움재의 열저항 특성)

  • Oh, Gidae;Kim, Daehong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.10
    • /
    • pp.15-24
    • /
    • 2010
  • In the case of underground power utilities pipe such as circular pipe, the most difficult problem is low compaction efficiency of the bottom of pipe inducing the failure of utilities. To overcome this problem, various studies have been performed and one of these is CLSM(Controlled Low Strength Materials) accelerated flow ability. But underground power utilities pipe backfill materials is also needed to have good thermal property that can dissipate the heat as rapidly as it is generated. So, in this study, we performed thermal resistancy test for various materials such as sand, weathered soil, clay and mixed soil to analyze the thermal characteristics of CLSM(Controlled Low Strength Materials) with accelerated flow ability for various conditions(water content, unit weight, void ratio, curing time) and to evaluate the applicability for backfill material of underground power utilities pipe. The test results of 16 specimens for thermal resistancy test showed good thermal property that maintained below $85^{\circ}C\;cm/W$.

The Development of GIS Interconnected Corrosion Prediction System for Underground Buried Gas Pipelines (GIS연계형 지중매설 가스배관의 부식 예측시스템 개발)

  • Bae Jeong-Hyo;Kim Dae-Kyeong;Kim Ki-Joon
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.3 s.11
    • /
    • pp.39-45
    • /
    • 2000
  • In general, most of the GIS only deal with materials and geometric data which just include position, radius, length of the structure. Therefore it's hard to get corrosion data from it. But the one that an owner of metallic structures want to know is the integrity of the structure. Cathodic Protection System can not protect corrosion on the underground facilities perfectly but protect corrsion effectively. It therefore is necessary to monitor the facilities continually So, we need the development of GIS interconnected a corrosion prediction system on the view point of the efficiency of operation and the protection for a big accident. The results of the development of its system are described in this paper. It can do life prediction and interference analysis and also newest corrosion data should be updated regularly.

  • PDF

A Study on the Open Cut Restoration of Underground Cavity Using Concrete Mat (콘크리트매트를 이용한 개착식 지반공동 복구방법에 관한 연구)

  • Park, Jeong-Jun;Shin, Heesoo;Chung, Yoonseok;You, Seung-Kyong;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.1
    • /
    • pp.55-65
    • /
    • 2019
  • This paper describes results of experimental and numerical analyses, in order to analyze a reinforcement effect of concrete mat on open cut restoration of underground cavity. The plate loading tests were conducted to evaluate a reinforcement effect of concrete mat, at reinforcement depths from the ground surface of 10 cm, 20 cm, and 30 cm. The result showed that the reduction ratio of stress (earth pressure) was about 60% at all reinforcement depth. The reinforcement effect considering ground surface settlement and reduction ratio of stress based on laboratory tests and numerical analysis was significant, at reinforcement depths from the ground surface of 10 cm~20 cm. LFWD test results showed that subgrade modulus was the largest when concrete mat was installed 20 cm below ground surface. Therefore, it is effective to reinforce concrete mat within 20 cm from the surface, when the underground cavity due to damage of underground utilities was formed in the height direction to the bottom of the pavement layer.

A Comparative Study of Microtremor HVSR from the Surface and Downhole Seismometers (지표형과 지중형 지진계의 상시미동 자료를 이용한 HVSR 비교 연구)

  • Su Young Kang;Kwang-Hee Kim
    • Journal of the Korean earth science society
    • /
    • v.44 no.6
    • /
    • pp.594-610
    • /
    • 2023
  • The horizontal-to-vertical spectral ratio (HVSR) has been widely applied to evaluate ground characteristics such as site response and thickness of the soft sedimentary layer on top of the bedrock via dominant frequencies and amplification factors of microtremors. Eight seismic stations were selected to investigate the HVSR results at the surface and at varying depths, and their variations due to wind speeds. These stations are equipped with seismic sensors on the surface and downhole(s) at depths. The borehole data analysis reveals that the geological condition at burial depth influences the HVSR results. Their dominant frequencies indicate the entire thickness of the soft layer, not the thickness to the bottom or top of the soft sedimentary layer from the seismometer burial depth. Analysis of the background noise observed at the surface showed that the resonance frequency estimation varied with wind speed changes. In the studied cases, the background noise observed in the sedimentary layer at depths of 20 to 66 meters yielded stable and consistent resonance frequency estimation regardless of wind speed fluctuations. The results of the seismic sensors buried deeper than 100 meters are unstable. The result indicates that the background noise from the buried seismometer at shallow depths (~0.3 m) under light wind conditions (wind speeds less than 3 m/s) is sufficient to achieve the purpose of the HVSR analysis.