• Title/Summary/Keyword: 지적 데이터 모델링

Search Result 24, Processing Time 0.02 seconds

3D modeling of Korean Traditional House based on BIM for Uploading to Spatial Information Open Platform (공간정보 오픈플랫폼 탑재를 위한 한옥의 BIM 기반 3차원 모델링 연구)

  • Kim, Kyeong-Min;Kim, Chan-Yong;Choi, Yun-Woong;Cho, Gi-Sung
    • Journal of Cadastre & Land InformatiX
    • /
    • v.44 no.2
    • /
    • pp.91-101
    • /
    • 2014
  • This study tried to create 3D object with LOD3 level for Korean traditional house which is atypical structure, upload to spatial information open platform and confirm the possibility for creating 3D-map. And this study tried to create 3D model for Korean traditional house based on BIM, performed 3D modeling for interior spatial information of Korean traditional house and confirm the development possibility of 3D modeling and visualization method of Korean traditional house. Also this study present the possibility of LOD4 level visualization for spatial information of Korean traditional house which is atypical structure, but 3D object with LOD4 level can't be uploaded to Spatial Information Open Platform currently, cause by data volume limitation of spatial information open platform.

Database Design for an Urban Geographic Information System based on an Object-oriented Approach (객체지향접근방식을 기반으로 한 도시지리정보시스템의 데이터베이스 설계에 관한 연구)

  • Ock, Han-Suk;Kim, Gap-Youl;Kim, Chang-Hwan;Kim, Sang-Wook
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.1 no.2
    • /
    • pp.56-66
    • /
    • 1998
  • The primary goal of the database design is to organize a large amount of data effectively in users and systems view point. Effective design of a database is very important for processing applications efficiently. In this paper, we discuss database design for an urban geographic information system that effectively maintains the cadastral and planimetric information. We first collect and analyze the requirements for the target urban geographic information system and then perform database design for these requirements. Our database design is based on the object-oriented approach that has rich expressive power and good reusability in comparison with the traditional relational approach. Especially, we employ the OMT, one of the most widely-used object-oriented models. We expect that our result would be helpful in building large databases for urban geographic information systems practically.

  • PDF

Discovering Interdisciplinary Convergence Technologies Using Content Analysis Technique Based on Topic Modeling (토픽 모델링 기반 내용 분석을 통한 학제 간 융합기술 도출 방법)

  • Jeong, Do-Heon;Joo, Hwang-Soo
    • Journal of the Korean Society for information Management
    • /
    • v.35 no.3
    • /
    • pp.77-100
    • /
    • 2018
  • The objectives of this study is to present a discovering process of interdisciplinary convergence technology using text mining of big data. For the convergence research of biotechnology(BT) and information communications technology (ICT), the following processes were performed. (1) Collecting sufficient meta data of research articles based on BT terminology list. (2) Generating intellectual structure of emerging technologies by using a Pathfinder network scaling algorithm. (3) Analyzing contents with topic modeling. Next three steps were also used to derive items of BT-ICT convergence technology. (4) Expanding BT terminology list into superior concepts of technology to obtain ICT-related information from BT. (5) Automatically collecting meta data of research articles of two fields by using OpenAPI service. (6) Analyzing contents of BT-ICT topic models. Our study proclaims the following findings. Firstly, terminology list can be an important knowledge base for discovering convergence technologies. Secondly, the analysis of a large quantity of literature requires text mining that facilitates the analysis by reducing the dimension of the data. The methodology we suggest here to process and analyze data is efficient to discover technologies with high possibility of interdisciplinary convergence.

Boosting the Performance of the Predictive Model on the Imbalanced Dataset Using SVM Based Bagging and Out-of-Distribution Detection (SVM 기반 Bagging과 OoD 탐색을 활용한 제조공정의 불균형 Dataset에 대한 예측모델의 성능향상)

  • Kim, Jong Hoon;Oh, Hayoung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.11
    • /
    • pp.455-464
    • /
    • 2022
  • There are two unique characteristics of the datasets from a manufacturing process. They are the severe class imbalance and lots of Out-of-Distribution samples. Some good strategies such as the oversampling over the minority class, and the down-sampling over the majority class, are well known to handle the class imbalance. In addition, SMOTE has been chosen to address the issue recently. But, Out-of-Distribution samples have been studied just with neural networks. It seems to be hardly shown that Out-of-Distribution detection is applied to the predictive model using conventional machine learning algorithms such as SVM, Random Forest and KNN. It is known that conventional machine learning algorithms are much better than neural networks in prediction performance, because neural networks are vulnerable to over-fitting and requires much bigger dataset than conventional machine learning algorithms does. So, we suggests a new approach to utilize Out-of-Distribution detection based on SVM algorithm. In addition to that, bagging technique will be adopted to improve the precision of the model.

Data Modeling for Cyber Security of IoT in Artificial Intelligence Technology (인공지능기술의 IoT 통합보안관제를 위한 데이터모델링)

  • Oh, Young-Taek;Jo, In-June
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.12
    • /
    • pp.57-65
    • /
    • 2021
  • A hyper-connected intelligence information society is emerging that creates new value by converging IoT, AI, and Bigdata, which are new technologies of the fourth industrial revolution, in all industrial fields. Everything is connected to the network and data is exploding, and artificial intelligence can learn on its own and even intellectual judgment functions are possible. In particular, the Internet of Things provides a new communication environment that can be connected to anything, anytime, anywhere, enabling super-connections where everything is connected. Artificial intelligence technology is implemented so that computers can execute human perceptions, learning, reasoning, and natural language processing. Artificial intelligence is developing advanced technologies such as machine learning, deep learning, natural language processing, voice recognition, and visual recognition, and includes software, machine learning, and cloud technologies specialized in various applications such as safety, medical, defense, finance, and welfare. Through this, it is utilized in various fields throughout the industry to provide human convenience and new values. However, on the contrary, it is time to respond as intelligent and sophisticated cyber threats are increasing and accompanied by potential adverse functions such as securing the technical safety of new technologies. In this paper, we propose a new data modeling method to enable IoT integrated security control by utilizing artificial intelligence technology as a way to solve these adverse functions.

A Study on Data Model Conversion Method for the Application of Autonomous Driving of Various Kinds of HD Map (다양한 정밀도로지도의 자율주행 적용을 위한 데이터 모델 변환 방안 연구)

  • Lee, Min-Hee;Jang, In-Sung;Kim, Min-Soo
    • Journal of Cadastre & Land InformatiX
    • /
    • v.51 no.1
    • /
    • pp.39-51
    • /
    • 2021
  • Recently, there has been much interest in practical use of standardized HD map that can effectively define roads, lanes, junctions, road signs, and road facilities in autonomous driving. Various kinds of de jure or de facto standards such as ISO 22726-1, ISO 14296, HERE HD Live map, NDS open lane model, OpenDRIVE, and NGII HD map are currently being used. However, there are lots of differences in data modeling among these standards, it makes difficult to use them together in autonomous driving. Therefore, we propose a data model conversion method to enable an efficient use of various kinds of HD map standards in autonomous driving in this study. Specifically, we propose a conversion method between the NGII HD map model, which is easily accessible in the country, and the OpenDRIVE model, which is commonly used in the autonomous driving industry. The proposed method consists of simple conversion of NGII HD map layers into OpenDRIVE objects, new OpenDRIVE objects creation corresponding to NGII HD map layers, and linear transformation of NGII HD map layers for OpenDRIVE objects creation. Finally, we converted some test data of NGII HD map into OpenDRIVE objects, and checked the conversion results through Carla simulator. We expect that the proposed method will greatly contribute to improving the use of NGII HD map in autonomous driving.

Entitymetrics Analysis of the Research Works of Dong-ju Yun using Textmining (텍스트마이닝을 이용한 윤동주 연구의 개체계량학적 분석)

  • Park, Jinkyeun;Kim, Taekyoun;Song, Min
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.28 no.1
    • /
    • pp.191-207
    • /
    • 2017
  • This paper employs entitymetrics analysis on the research works of Dong-ju Yun. He was a Korean poet who was studied by many researchers on his works, religion and life. We collected 1,076 papers about Dong-ju Yun and conducted various approaches including co-author citation analysis, topic modeling analysis to identify the topic trend in the study of Dong-ju Yun. Also we extracted entities like person's name and literature's title from abstract to examine the relationship among them. The result of this paper enables us to objectively identify the topic trend and infer implicit relationships between key concept associated with Dong-ju Yun based on text data. Moreover, we observed sub-research topics such as life, poem, aesthetic existence, comparative literature, literary translation, and religious beliefs. This paper shows how entitymetrics can be utilized to study intellectual structures in the humanities.

An Investigation on Digital Humanities Research Trend by Analyzing the Papers of Digital Humanities Conferences (디지털 인문학 연구 동향 분석 - Digital Humanities 학술대회 논문을 중심으로 -)

  • Chung, EunKyung
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.55 no.1
    • /
    • pp.393-413
    • /
    • 2021
  • Digital humanities, which creates new and innovative knowledge through the combination of digital information technology and humanities research problems, can be seen as a representative multidisciplinary field of study. To investigate the intellectual structure of the digital humanities field, a network analysis of authors and keywords co-word was performed on a total of 441 papers in the last two years (2019, 2020) at the Digital Humanities Conference. As the results of the author and keyword analysis show, we can find out the active activities of Europe, North America, and Japanese and Chinese authors in East Asia. Through the co-author network, 11 dis-connected sub-networks are identified, which can be seen as a result of closed co-authoring activities. Through keyword analysis, 16 sub-subject areas are identified, which are machine learning, pedagogy, metadata, topic modeling, stylometry, cultural heritage, network, digital archive, natural language processing, digital library, twitter, drama, big data, neural network, virtual reality, and ethics. This results imply that a diver variety of digital information technologies are playing a major role in the digital humanities. In addition, keywords with high frequency can be classified into humanities-based keywords, digital information technology-based keywords, and convergence keywords. The dynamics of the growth and development of digital humanities can represented in these combinations of keywords.

Microplastics Intellectual Network Analysis based on Bigdata (빅데이터 기반한 미세플라스틱 지적네트워크 분석)

  • Kim, Younghee;Chang, Kwanjong
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.4
    • /
    • pp.239-259
    • /
    • 2022
  • Since 2019, research on microplastics has been actively conducted around the world, so analyzing the differences between domestic and foreign microplastics research can be a milestone in establishing the direction of domestic research. In this study, microplastic papers from KCI and WoS were extracted and the differences between domestic and foreign studies were analyzed using a network analysis methodology based on big data such as author keyword co-occurrence word analysis, thesis co-citation analysis, and author co-citation analysis. As a result of the analysis, the analysis of the research topic confirmed that studies that could affect the human body and the treatment of microplastics in daily life were additionally needed in Korea. In the analysis of the depth of thesis citation that examines the quality of research, it was found that Korea was still insufficient at 2.25 overseas and 1.39 in Korea. In the analysis of the composition of the joint research front, where various researchers participate and share information, 3 out of 22 clusters in Korea are Star type. In the case of overseas, all 19 clusters have a mesh structure, so it was confirmed that information flow and sharing were insufficient in specific research fields in Korea. These research results confirmed the need to expand the research topic of microplastics, improve the quality of research, and improve the research promotion system in which various researchers participate. In addition, if the automation program is developed based on topic modeling, it will be possible to build a system capable of real-time analysis.

Development of an Object-Oriented Framework Data Update System (객체 기반의 기본지리정보 갱신시스템 개발)

  • Lee, Jin-Soo;Choi, Yun-Soo;Seo, Chang-Wan;Jeon, Chang-Dong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.1
    • /
    • pp.31-44
    • /
    • 2008
  • The 1st phase framework data implementation of National Geographic Information Systems (NGIS) used 1:5,000 digital map with 5 years updating period which is lacking in the latest information. This is a significant factor which hinders the use of framework data. This study proposed the efficient technical method of a location based object data management and system implementation for updating framework data. First, we did an object-oriented data modeling and database design using a location based features identifier(UFID: Unique Feature IDentifier). The second, we developed the system with various functions such as a location based UFID creation, input and output, a spatial and attribute data editing, an object based data processing using UML(Unified Modeling Language). Finally, we applied the system to the study area and got high quality data of 99% accuracy and 35% benefit effect of personnel expenses compare to the previous method. We expect that this study can contribute to the maintenance of national framework data as well as the revitalization of various GIS markets by providing user the latest framework data and that we can develop the methods of a feature-change modeling and monitoring using an object based data management.

  • PDF