DOI QR코드

DOI QR Code

Discovering Interdisciplinary Convergence Technologies Using Content Analysis Technique Based on Topic Modeling

토픽 모델링 기반 내용 분석을 통한 학제 간 융합기술 도출 방법

  • 정도헌 (덕성여자대학교 문헌정보학과) ;
  • 주황수 (덕성여자대학교 바이오공학과)
  • Received : 2018.08.18
  • Accepted : 2018.09.12
  • Published : 2018.09.30

Abstract

The objectives of this study is to present a discovering process of interdisciplinary convergence technology using text mining of big data. For the convergence research of biotechnology(BT) and information communications technology (ICT), the following processes were performed. (1) Collecting sufficient meta data of research articles based on BT terminology list. (2) Generating intellectual structure of emerging technologies by using a Pathfinder network scaling algorithm. (3) Analyzing contents with topic modeling. Next three steps were also used to derive items of BT-ICT convergence technology. (4) Expanding BT terminology list into superior concepts of technology to obtain ICT-related information from BT. (5) Automatically collecting meta data of research articles of two fields by using OpenAPI service. (6) Analyzing contents of BT-ICT topic models. Our study proclaims the following findings. Firstly, terminology list can be an important knowledge base for discovering convergence technologies. Secondly, the analysis of a large quantity of literature requires text mining that facilitates the analysis by reducing the dimension of the data. The methodology we suggest here to process and analyze data is efficient to discover technologies with high possibility of interdisciplinary convergence.

본 연구는 텍스트 마이닝 기법을 활용하여 대량의 데이터로부터 학제 간 융합 기술을 발굴하는 일련의 과정을 제시하는 것을 목표로 한다. 바이오공학 기술(BT) 분야와 정보통신 기술(ICT) 분야 간의 융합 연구를 위해 (1) BT 분야의 기술용어 목록을 작성하여 대량의 학술논문 메타데이터를 수집한 후 (2) 패스파인더 네트워크 척도 알고리즘을 이용해 유망 기술의 지식 구조를 생성하고 (3) 토픽 모델링 기법을 사용하여 BT분야 중심의 내용 분석을 수행하였다. 다음 단계인 BT-ICT 융합 기술 아이템 도출을 위해, (4) BT-ICT 관련 정보를 얻기 위해 BT 기술용어 목록을 상위 개념으로 확장한 후 (5) OpenAPI 서비스를 이용하여 두 분야가 관련된 학술 정보의 메타데이터를 자동 수집하여 (6) BT-ICT 토픽 모델의 내용 분석을 실시하였다. 연구를 통해 첫째, 융합 기술의 발굴을 위해서는 기술 용어 목록의 작성이 중요한 지식 베이스가 된다는 점과 둘째, 대량의 수집 문헌을 분석하기 위해서는 데이터의 차원을 줄여 분석을 용이하게 해주는 텍스트 마이닝 기법이 필요하다는 점을 확인하였다. 본 연구에서 제안한 데이터 처리 및 분석 과정이 학제 간 융합 연구의 가능성이 있는 기술 요소들을 발굴하는 데 효과적이었음을 확인할 수 있었다.

Keywords

References

  1. Kang, T.G., Park, S.H., Jang, I.S., Kim, I.S., & Han, D.W. (2009). The convergence technology analysis of green growth led illumination. Electronics and telecommunications trends, 24(5), 30-37. https://doi.org/10.22648/ETRI.2009.J.240504
  2. STEPI (2011) Science, technology and society studies for societal challenges. STEPI Policy Research 2011-14.
  3. Park, Chi-Ho, Kwon, Soon, Lee, Chung-Hee, & Jung, Woo-Young (2011). A study of a reliable positioning based on technology convergence of a satellite navigation system and a vision system. Journal of the Institute of Electronics and Information Engineers, TC48(10), 20-28.
  4. Baek, Hyun Mi, & Kim, Myung Seuk (2013). Technological convergence trend through patent network analysis: focusing on patent data in Korea, U.S., europe, and Japan. Asia-Pacific Journal of Business Venturing and Entrepreneurship, 8(2), 11-19. https://doi.org/10.16972/apjbve.8.2.201306.11
  5. Korea Institute for Industrial Economics & Trade (2014). An analysis on the trends and determinants of technology convergence of Korea. R&D Report 2014-709.
  6. Biotech Policy Research Center (2015). 2015 Discovering future emerging biotechnologies - ICTconverged biohealth top 10 future emerging biotechnologies -. BioINsay No.2(Series No.223)
  7. Biotech Policy Research Center (2017). 2017 Future emerging biotechnologies - top 10 future emerging technologies leading biohealth issues -. BioINsay No.14(Series No.242)
  8. Biotech Policy Research Center (2018). 2018 Future emerging biotechnologies - top 10 future emerging technologies from the aspects of core, red, green, white bio -. BioInsay No.27 (Series No.261)
  9. Yuk, JeeHee, & Song, Min (2018). A study of research on methods of automated biomedical document classification using topic modeling and deep learning. Journal of the Korean Society for Information Management, 35(2), 63-88. http://dx.doi.org/10.3743/KOSIM.2018.35.2.063
  10. Jeong, Do-Heon (2017). Prescriptive analytics system design fusing automatic classification method and intellectual structure analysis method. Journal of the Korean Society for Information Management, 34(4), 33-57. http://dx.doi.org/10.3743/KOSIM.2017.34.4.033
  11. Cho, Ah, Lee, Kyung Hee, & Cho, Wan Sup (2015). Latent mobility pattern analysis of bus passengers with LDA. Journal of the Korean Data & Information Science Society, 26(5), 1061-1069. http://dx.doi.org/10.7465/jkdi.2015.26.5.1061
  12. Jin, Seol A, & Song, Min (2016). Topic modeling based interdisciplinarity measurement in the informatics related journals. Journal of the Korean Society for Information Management, 33(1), 7-32. http://dx.doi.org/10.3743/KOSIM.2016.33.1.007
  13. Choi, Hochang, Kwahk, Kee-Young, & Kim, Namgyu (2018). Discovering promising convergence technologies using network analysis of maturity and dependency of technology. Journal of Intelligence and Information Systems, 24(1), 101-124. http://dx.doi.org/10.13088/jiis.2018.24.1.101
  14. Blei, D.M., Ng, A.Y., & Jordan, M.I. (2003). Latent dirichlet allocation. The Journal of Machine Learning Research, 3, 993-1022.
  15. Caen, O., Lu, H., Nizard, P., & Taly, V. (2017). Microfluidics as a strategic player to decipher single-cell omics?, Trends in Biotechnology, 35(8), 713-727. http://doi.org/10.1016/j.tibtech.2017.05.004
  16. Deerwester, S., Dumais, S., Landauer, T., Furnas, G., & Harshman, R. (1990). Indexing by latent semantic analysis. Journal of the American Society of Information Science, 41(6), 391-407. https://doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
  17. Farrahi, K., Gatica-Perez, D., & Gatica-Perez, D. (2012). Extracting mobile behavioral patterns with the distant N-gram topic model. In Proceedings of the 16th International Symposium on Wearable Computers (ISWC), 1-8. http://doi.org/10.1109/ISWC.2012.20
  18. Galipeau, J., & Sensebe, L. (2018). Mesenchymal stromal cells: Clinical challenges and therapeutic opportunities. Cell Stem Cell, 22(6), 824-833. http://doi.org/10.1016/j.stem.2018.05.004
  19. Gartner (2015). Are wearables fit for clincal trials?. smarter with gartner(2015.10.15.). Retrieved from http://www.gartner.com/smarterwithgartner/are-wearables-fit-for-clinical-trials/
  20. Gartner (2017). Gartner says worldwide wearable device sales to grow 17 percent in 2017. newsroom press release(2017.08.24.). Retrieved from http://www.gartner.com/en/newsroom/press-releases/2017-08-24-gartner-says-worldwide-wearable-device-sales-to-grow-17-percent-in-2017
  21. Gartner (2018). Wearables hold the key to connected health monitoring. smarter with gartner (2018.03.08.) Retrieved from http://www.gartner.com/smarterwithgartner/wearables-hold-the-key-to-connected-health-monitoring/
  22. Hofmann, T. (1999). Probabilistic latent semantic indexing. In Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval, 50-57.
  23. Jeong, D.H., & Song, M. (2014). Time gap analysis by the topic model-based temporal technique. Journal of Informetrics, 8(3), 776-790. http://dx.doi.org/10.1016/j.joi.2014.07.005
  24. Jung, S.Y., Ahn, S., Nam, K.H., Lee, J.P., & Lee, S.J. (2012). In vivo measurements of blood flow in a rat using X-ray imaging technique. The International Journal of Cardiovascular Imaging, 28(2), 1853-1858. http://doi.org/10.1007/s10554-012-0029-1
  25. Lee, H.Y., & Hong, I.S. (2017). Double-edged sword of mesenchymal stem cells: Cancer-promoting versus therapeutic potential. Cancer Science, 108(10), 1939-1946. http://doi.org/10.1111/cas.13334
  26. McKinsey Global Institute (2011). Big data: The next frontier for innovation, competition, and productivity. Retrieved from http://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/big-data-the-next-frontier-for-innovation
  27. MIT (2015). MIT technology review, 10 breakthrough technologies, 2015. Retrieved from http://www.technologyreview.com/lists/technologies/2015/
  28. Prakadan, S.M., Shalek, A.K., & Weitz, D.A. (2017). Scaling by shrinking: empowering singlecell 'omics' with microfluidic devices. Nature Reviews Genetics, 18(6), 345-361. http://doi.org/10.1038/nrg.2017.15
  29. Quirin, A., Cordon, O., Guerrero-Bote, V.P., Vargas-Quesada, B., & Moya-Anegon, F. (2008). A quick MST-Based algorithm to obtain pathfinder networks($\infty$, n-1). Journal of the American Society for Information Science and Technology, 59(12), 1912-1924. http://doi.org/10.1002/asi.20904
  30. Research and Markets (2017). mHealth (Mobile Healthcare) Ecosystem Market: 2017-2030-$23 Billion Opportunities, Challenges, Strategies & Forecasts. Globe Newswire(2017.03.02.). Retrieved from http://globenewswire.com/news-release/2017/03/02/930109/0/en/mHealth-Mobile-Healthcare-Ecosystem-Market-2017-2030-23-Billion-Opportunities-Challenges-Strategies-Forecasts.html
  31. Ridge, S.M., Sullivan, F.J., & Glynn, S.A. (2017). Mesenchymal stem cells: key players in cancer progression. Molecular Cancer, 16(31). http://doi.org/10.1186/s12943-017-0597-8
  32. Salton, G., & McGill, M.J. (1983). Introduction to Modern Information Retrieval. McGraw-Hill (NY).
  33. Schvaneveldt, R.W., Durso, F.T., & Dearholt, D.W. (1989). Network structures in proximity data. In G. Bower(Ed.), The psychology of learning and motivation: Advances in research and theory, 24, 249-284. New York: Academic Press.
  34. Song, M., & Kim, S.Y. (2013). Detecting the knowledge structure of bioinformatics by mining full-text collections. Scientometrics, 96(1), 183-201. http://doi.org/10.1007/s11192-012-0900-9
  35. The Science Times (2016). '와해성 기술'이 내년 R&D 이끈다(2016.12.14.). Retrieved from http://www.sciencetimes.co.kr/?news=%EC%99%80%ED%95%B4%EC%84%B1-%EA%B8%B0%EC%88%A0%EC%9D%B4-%EB%82%B4%EB%85%84-rd-%EC%9D%B4%EB%81%88%EB%8B%A4
  36. Vretos, N., Nikolaidis, N., & Pitas, I. (2012). Video fingerprinting using latent dirichlet allocation and facial images. Pattern Recognition, 45(7), 2489-2498. http://doi.org/10.1016/j.patcog.2011.12.022
  37. Whitesides, G.M., Ostuni, E., Takayama, S., Jiang, X., & Ingber, D.E. (2001). Soft lithography in biology and biochemistry. Annual Review of Biomedical Engineering, 3, 335-373. http://doi.org/10.1146/annurev.bioeng.3.1.335
  38. Wikipedia (2018). Disruptive Innovation. Retrieved from http://en.wikipedia.org/wiki/Disruptive_innovation