• Title/Summary/Keyword: 지역예측모형

Search Result 1,247, Processing Time 0.035 seconds

Hydrologic Variable Prediction Using Nonlinear Ensemble Model (비선형 앙상블 모형을 이용한 수문량 예측)

  • Kwon, Hyun-Han;Kim, Min-Ji;Kim, Jang-Kyung;Na, Bong-Gil
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.359-359
    • /
    • 2011
  • 기존 수자원계획에 있어서 수문량 예측은 매우 제한적으로 활용되고 있는 실정으로서 최근 기후변화 및 이상기후로 기인하는 기상학적 불확실성 증가에 대해서 효과적으로 대응 하기가 어렵다. 본 연구에서는 기상인자를 활용한 수문변량 예측기법을 개발하고자 하며 국내에 수문자료가 충분한 지역에 대해서 모형의 적합성과 타당성을 평가하고자 한다. 대부분의 수문변량은 해수면온도, 해수면기압, 바람장 등 Large Scale의 기상학적 특성과 연관성을 가지고 있으며 선행시간을 가지고 수문순환에 영향을 주고 있다. 수문변량과 기상학적 변량사이에는 일반적으로 비선형 관계를 가지고 있는 것으로 알려지고 있으며 이러한 비선형 관계를 효과적으로 예측하기 위해서 본 연구에서는 비선형 예측모형을 개발 하고자 한다. 최근 비선형 예측모형에서 불확실성을 고려한 모형에 대한 연구가 활발히 진행되고 있으며 특히, 다중 모형을 사용한 Ensemble 개념의 예측모형 도입이 이루어지고 있다. 본 연구에서는 국내 다목적댐 유입량 및 강수량에 대해서 최적 기상변량을 도출하고 이를 활용한 비선형 Ensemble 예측모형을 개발하였다. 일반적인 선형 회귀분석 모형에 비해 기상현상과 수문현상에 비선형성을 효과적으로 재현할 수 있는 장점을 확인할 수 있었으며 이와 더불어 예측결과에 대한 불확실성을 제공함으로서 신뢰성 있는 수자원 계획을 위한 기초자료로서 활용이 가능할 것으로 판단된다.

  • PDF

Drought index forecast using ensemble learning (앙상블 기법을 이용한 가뭄지수 예측)

  • Jeong, Jihyeon;Cha, Sanghun;Kim, Myojeong;Kim, Gwangseob;Lim, Yoon-Jin;Lee, Kyeong Eun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.5
    • /
    • pp.1125-1132
    • /
    • 2017
  • In a situation where the severity and frequency of drought events getting stronger and higher, many studies related to drought forecast have been conducted to improve the drought forecast accuracy. However it is difficult to predict drought events using a single model because of nonlinear and complicated characteristics of temporal behavior of drought events. In this study, in order to overcome the shortcomings of the single model approach, we first build various single models capable to explain the relationship between the meteorological drought index, Standardized Precipitation Index (SPI), and other independent variables such as world climate indices. Then, we developed a combined models using Stochastic Gradient Descent method among Ensemble Learnings.

A Study on the Inter-Model Comparison and Influencing Factors on the Use Predictive Power of Shared E-scooter (공유 전동킥보드 이용 예측력에 대한 모형 및 영향요인에 관한 연구)

  • Daewon Kim;Dongmin Lee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.3
    • /
    • pp.29-47
    • /
    • 2024
  • Many domestic and foreign studies derive factors that significantly affect the use of shared E-scooters based on performance data, but few studies have been conducted with comparative analysis models using predictive power, applying them to other regions. Therefore, by clearly establishing detailed influencing factors and scope in Gwangjin-gu and Gangnam-gu by using domestic shared E-scooter performance data, this study enhances predictive power, and the Geographically Weighted Regression model is derived through spatial autocorrelation verification. Based on the results, the direction of a construction model created from regional differences was presented, and major implications from the user's perspective are derived based on the difference between actual use and the model's prediction.

Flash flood risk indicator for ungauged area of Seoul metropolitan region (수도권 미계측지역에 대한 돌발홍수위험도 산정 연구)

  • Lee, Byong Ju
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.94-94
    • /
    • 2016
  • 돌발홍수는 수십 $km^2$ 이하의 유역에서 강우가 발생한 후 6시간 이내의 단시간에 홍수징후가 나타나는 현상으로 정의될 수 있다. 돌발홍수를 잘 예측하기 위해서는 국지적으로 발생하는 집중 호우를 잘 예측해야 하며 유역내 공간적인 수문반응해석을 통해 돌발홍수를 예측하는 기술이 요구된다. 본 연구에서는 유역내 공간적인 수문반응을 잘 모의하기 위해 TOPLATS 지표해석모형을 이용하였다. TOPLATS(TOPMODEL based Land Atmosphere Transfer Scheme) 모형은 물수지와 에너지수지를 통해 단위격자에 대한 실제증발산량, 토양수분량, 지하수면깊이, 지표유출량, 잠열, 현열, 지열, 순복사량 등을 모의하며 소유역단위로 지하수면깊이를 재분포시키는 특성을 가지고 있다. 돌발홍수 위험도를 산정하기 위해 실제 돌발홍수 피해사례를 조사하였으며 피해지역과 대응되는 격자 수문성분과의 상관성 분석을 통해 돌발홍수 위험도 모형을 산정하였다. 대상지역은 수도권 전체지역을 모의하기 위해 한강, 임진강, 안성천 유역을 대상지역으로 선정하였다. 수도권 지역은 약 11,930 km2이며 2009~2012년동안 총 38건의 돌발홍수 피해사례가 신고되었다. 기상자료는 기상청 AWS와 ASOS 시단위 강우, 기온, 상대습도, 풍속, 일조, 기압자료를 이용하였다. 돌발홍수 피해사례 38건에 대해 대응되는 모의격자의 수문성분을 분석하였으며 27(71%)에서 구조요청시점에 대해 강우량, 지표유출량, 토양수분량, 지하수면깊이가 적절하게 모의되는 것을 확인하였다. 강우조건에 따른 돌발홍수 위험도는 구조요청시점 기준 선행시간 4~6시간까지 71~87%, 구조요청시점으로 한정된 0시간에서는 42~52%로 나타났다. 이상의 결과로부터 지표해석모델을 이용한 격자 수문성분과 통계적 돌발홍수지수모형으로부터 산정된 돌발홍수 위험도는 산지 미계측지역에 대한 돌발홍수를 예측하는데 활용될 수 있을 것으로 판단된다.

  • PDF

크리깅방법에 의한 오존도 예측

  • Jang, Ji-Hui;NamGung, Pyeong
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.05a
    • /
    • pp.255-260
    • /
    • 2003
  • 공간자료에 대한 통계적 모형과 상관관계, 거리모형 등을 고려하여 크리깅방법에 의한 미 측정지역의 오존도를 예측한다. 서울시의 오존자료를 이용하여 예측한 결과 보통 크리깅방법이 효율적이다.

  • PDF

Construction of hydraulic flood prediction model for Hyeongsan river (형산강 수리학적 홍수예측 모형 구축)

  • Lee, Jae Yeong;Kim, Ji Sung;Kim, Tae Hyung;Choi, Kyu Hyun;Kim, Chang Sung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.393-393
    • /
    • 2020
  • 최근 기후변화 등의 영향으로 2019년 우리나라에 영향을 준 가을 태풍은 링링, 타파, 미탁 등 3개로 근대 기상관측이 시작된 이래 가장 많은 가을 태풍이 한반도에 상륙했다. 특히, 경주시는 태풍 미탁으로 인해 97억원의 재산피해와 수해복구에 225억원이 소요될 것으로 예상되어 특별재난지역으로 선포되었다. 이러한 홍수로 인한 피해를 줄이기 위해 환경부에서는 한강, 낙동강, 금강, 영산강 홍수통제소를 설립하여 강우 및 수위관측소를 이용한 홍수에 대한 지속적인 모니터링과 홍수특보 발령 등을 수행하고 있다. 본 연구에서는 하천 홍수에 의한 침수피해를 방지하고자 수리학적 홍수예측 모형을 구축하고 이를 홍수예보에 활용할 수 있도록 하였다. 대상지역인 경주시 형산강 유역에는 현재 14개의 강우관측소와 9개의 수위관측소가 운영되고 있으며, 홍수특보 대상 지점으로 경주시(강동대교)와 포항시(형산교) 2개 지점이 있다. 형산강 유역은 현재 수문학적 홍수예측 모형을 운영하고 있으나 수위관측소 기준으로만 예측이 가능하여 정확한 예보를 위해서는 수리학적 홍수예측 모형을 구축이 필요하다. 수리학적 홍수예측 모형의 구축을 위해서는 현 상황의 하천단면, 횡단구조물 및 변화된 유역환경을 반영할 수 있는 모형의 구축이 필요하기 때문에 2013년에 수립된 형산강 하천기본계획을 참고하였으며, 모형은 홍수통제소에서 운영중인 1차원 수리해석 모형인 FLDWAV를 이용하였다. 또한, 2019년 태풍 미탁 사상을 대상으로 검보정을 실시하기 위해 상류단 경계조건으로는 경주시(서천교) 수위관측소의 유량, 하류단 경계조건으로는 포항항 조위관측소의 조위를 이용하였고 7개의 유역 유출량을 측방유입으로 구성하였다. 본 연구에서 구축된 수리학적 홍수예측 모형을 통해 기존 형산강 유역에 대한 홍수 예보 업무를 보완하여 효과적인 방재대책 마련이 가능할 것이다.

  • PDF

Expectation Analysis of Inundation Using Distributed Model in NamgangDam Basin (분포형 모형을 적용한 남강댐 유역의 침수예측 분석)

  • Park, Mi Ri;Park, Sung Je;Lee, Young Kune
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.584-584
    • /
    • 2015
  • 최근 기후변화로 인한 국지성 집중호우와 태풍 등으로 홍수피해가 급증하고 있음에 따라 침수지역에 대한 공간적인 분석과 사전 예측으로 피해를 최소화하려는 노력이 필요하다. 따라서 본 연구에서는 소유역 별 평균화된 매개변수로 홍수량을 산정하는 집중형 모형이 아닌 분포형 모형을 적용하여 남강댐 유역의 유출량 산정 및 침수예측을 분석하였다. 분포형 모형은 격자체계를 기반으로 유역에 각 격자별 공간적 특성이 반영된 매개변수를 적용하므로 유역의 특성을 효과적으로 반영하므로 집중형 모형보다 정확한 해석이 가능하다. DEM, 토양도, 토지피복도 등의 격자크기 $240{\times}240$의 지형공간 자료를 ArcGIS를 이용하여 남강댐유역의 Flow direction, 경사도, 하도경사, 불투수율, 유효공극률, 조도계수, 토양심도, 수리전도도, 토양흡인수두 등의 수문매개변수를 추출하였다. 강우 자료의 경우 티센(Thiessen)법에 의해 선정된 남강댐유역 주변의 장수, 거창, 진주, 합천, 산청, 남원 강우관측소의 100년빈도 확률강우량 산정하여 24시간 확률강우를 3분위 Huff 분포시킨 후 강우의 공간적 통계특성을 반영하는 크리깅(Kriging)기법으로 적용하여 강우보간을 실시하였다. 침수예측을 위해 $Vflo^{TM}$모형을 이용해 48시간의 강우모의시간 홍수수문곡선 유도 및 홍수량 산정하였으며, 시간에 따른 침수 시뮬레이션하여 침수예측도를 작성하였다. 작성 시 침수심의 정도에 따라 5개의 구간으로 분류해 침수위험지역을 확인 할 수 있도록 도식화하였다. 본 연구에서는 남강댐유역의 침수위험지역을 개략적으로 예측할 수 있었으며, 추후 연구에서는 보다 조밀한 격자크기와 강우를 이용하여 분석한다면 향후 피난 정보 제공과 홍수재해지도 작성, 홍수방지 시설물 건설 또는 홍수보험계획 등에 응용이 될 것으로 판단된다.

  • PDF

Forecasting of Foreign Tourism demand in Kyeongju (경주지역 외국인 관광수요 예측)

  • Son, Eun Ho;Park, Duk Byeong
    • Journal of Agricultural Extension & Community Development
    • /
    • v.20 no.2
    • /
    • pp.511-533
    • /
    • 2013
  • The study used a seasonal ARIMA model to forecast the number of tourists to Kyeongju foreign in a uni-variable time series. Time series monthly data for the investigation were collected ranging from 1995 to 2010. A total of 192 observations were used for data analysis. The date showed that a big difference existed between on-season and off-season of the number of foreign tourists in Kyeongju. In the forecast multiplicative seasonal ARIMA(1,1,0) $(4,0,0)_{12}$ model was found the most appropriate model. Results show that the number of tourists was 694 thousands in 2011, 715 thousands in 2012, 725 thousands in 2013, 738 thousands in 2014, and 884 thousands in 2015. It was suggested that the grasping of the Kyeongju forecast model was very important in respect of how experts in tourism development, policy makers or planners would establish marketing strategies to allocate services in Kyeongju as a tourist destination and provide tourism facilities efficiently.

A Study on Water Quality Prediction for Climate Change Using Watershed Model in Andong Dam Watershed (유역모형을 이용한 기후변화에 따른 안동댐 유역의 미래 수질 예측)

  • Noh, Hee-Jin;Kim, Young-Do;Kang, Boo-Sik;Yi, Hye-Suk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.945-945
    • /
    • 2012
  • 본 연구에서는 낙동강 수계의 안동댐 유역을 대상지역으로 선정하여 미래 기후변화 시나리오에 따른 댐 유역의 수환경 영향을 예측해 보고자 하였다. 특히 미래기후에 대한 수환경 평가는 기후자료를 입력 값으로 요구하는 강우-유출모형을 이용하거나 유량 이외에 유사, 영양물질과 같은 수질인자를 동시에 모의할 수 있는 유역모형을 이용하여 평가하는 것이 일반적이다. 이를 위해 선행연구로 IPCC(Intergovernmental Panel on Climate Change)에서 제공하는 AR4 시나리오의 RCM 자료를 ANN(Artificial Neural Network)기법을 이용하여 안동댐 유역의 총 4개 기상관측소에 대한 과거 20년(1991~2010) 실측자료를 바탕으로 미래 강수 및 습도 그리고 온도에 대해 상세화 하여 미래 기후 시나리오를 생산하였다. 또한 안동댐 유역 단위의 수질을 예측하기 위해 토양과 토지이용 및 토지관리 상태에 따른 수문-수질 모의가 가능한 유역모형인 SWAT(Soil and Water Assessment Tool)을 이용하였다. 과거의 기상자료와 수질자료를 이용하여 유역모델의 검 보정을 실시하였으며 모형의 보정 및 검증결과에 따른 적합성과 상관성을 판단하기 위해 결정계수($R^2$)와 평균제곱근오차(Root Mean Square Error, RMSE)를 사용하였으며, 모형의 효율성 검증으로는 Nash and Sutcliffe(1970)가 제안한 모형효율성계수(NSE)를 사용하였다. 최종적으로 기후 시나리오에 대해서 전망된 지역상세기후를 유역모형의 입력자료로 이용하여 안동댐 유역의 미래수문 및 수질을 예측하고자 하였다.

  • PDF

Rainfall Prediction of Seoul Area by the State-Vector Model (상태벡터 모형에 의한 서울지역의 강우예측)

  • Chu, Chul
    • Water for future
    • /
    • v.28 no.5
    • /
    • pp.219-233
    • /
    • 1995
  • A non-stationary multivariate model is selected in which the mean and variance of rainfall are not temporally or spatially constant. And the rainfall prediction system is constructed which uses the recursive estimation algorithm, Kalman filter, to estimate system states and parameters of rainfall model simulataneously. The on-line, real-time, multivariate short-term, rainfall prediction for multi-stations and lead-times is carried out through the estimation of non-stationary mean and variance by the storm counter method, the normalized residual covariance and rainfall speed. The results of rainfall prediction system model agree with those generated by non-stationary multivariate model. The longer the lead time is, the larger the root mean square error becomes and the further the model efficiency decreases form 1. Thus, the accuracy of the rainfall prediction decreases as the lead time gets longer. Also it shows that the mean obtained by storm counter method constitutes the most significant part of the rainfall structure.

  • PDF