• Title/Summary/Keyword: 지역에너지계획

Search Result 227, Processing Time 0.025 seconds

Policy Implication on UK's Net Zero 2030 in Water Industry (영국 물산업 분야 탄소중립 방안에 대한 정책적 시사점)

  • Suh, Jin Suhk;Kim, Shang Moon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.46-46
    • /
    • 2021
  • 국제사회는 1992년 기후변화협약 체결 이후 지구온도 상승을 2℃이하로 억제하는 등 기후변화 문제를 해결하기 위해 노력하고 있다. 그러나 1997년 선진국(38개국) 중심으로 2020년까지 탄소감축(교토의정서)을 선언하였음에도 불구하고, 미국, 중국 등의 감축의무 미참여로 인해 기후변화대응에 대한 한계를 노출한 바 있다. 그 이후 COP21(2015년)에서 모든 국가에 감축의무를 부여하는 신(新)기후체제를 출범함으로써 선진국뿐만 아니라 개발도상국도 2020년부터 탄소감축의무를 부담하게 되었다. 영국은 기후변화위원회의 권고에 따라 탄소중립경제(Net-Zero Economy) 실현을 위해 국가적 탄소배출 목표를 발표(2019년)하고 온실가스 배출 'Zero'를 기후변화법에 명시하여 모든 산업 인프라 및 환경에 적용시키려 한다. 전 세계에서 최초로 영국의 물산업 분야는 'Net Zero 2030 Routemap'을 발표하여 물산업분야의 탄소중립 실현을 위해 다양한 정책적 로드맵과 실행방안(시나리오)을 수립하였다. 이러한 실행방안은 국가정책에 부합하고 자국내 물기업의 탄소저감 실행계획의 수립을 지원하는데 그 목적이 있다. 구체적인 실행방안은 탄소중립 달성을 위해 비용, 효과, 기술수준 및 기간 등을 고려하여, ①수요주도형, ②기술주도형, ③자연친화주도형, 그리고 ④복합형으로 제시하고 있다. 실행시나리오에 따르면, 수요주도형은 상하수도 분야 수요관리 및 기술, 설비의 효율화를 통한 배출 저감 방안으로 2018~19년 기준, 총배출량 2.41MtCO2e에서 2030년까지 0.54MtCO2e으로 약 77%의 감소효과를 기대하고 있다. 기술주도형의 경우, 심각한 탄소배출 분야의 기술개발 및 혁신을 통해 배출량을 최소화하는 시나리오이며, 총배출량(2.41MtCO2e)을 0.10MtCO2e(약 96%)까지 감소시키기 위한 방안이다. 자연친화주도형은 물기업의 자산 및 그 외 지역에 자연친화적 환경조성을 통한 탄소상쇄방안을 중심으로 총배출량을 0.88MtCO2e(약 63%)까지 저감하는 효과를 나타낸다. 마지막으로 복합협은 시나리오별 실효성과 적용시기를 고려할 때 가장 효과적인 방안으로 약 74%의 저감효과를 나타내지만, 시기적절성, 효과성에서, 가장 최적의 방안으로 제시되고 있다. 본 연구는 이러한 영국 물산업 분야의 탄소중립 정책과 실행방안 분석하고 그 시사점을 제시함으로써 국내 물산업 분야의 탄소중립을 위한 구체적 실행계획 수립에 이바지하고자 한다. 물산업 분야의 탄소중립은 기존 물산업 가치사슬 변화 등 물산업 생태계 전반의 변화를 초래할 것이며, 이러한 변화는 국내 물산업의 자본·운영시장의 비용증가에 대한 도전과 신재생에너지 기술 등 탄소 중립 기술 습득 및 새로운 일자리 창출 등 신(新)시장체계에 대한 기회가 동시에 상존한다.

  • PDF

An Analysis of Ecological Footprint of Yong-in City (용인시 생태발자국 지수의 분석과 고찰 - 음식, 건조환경, 산림, 에너지 부문을 중심으로 -)

  • Park, Ji Young;Kim, Jin-Oh
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.44 no.2
    • /
    • pp.1-10
    • /
    • 2016
  • The purpose of this study is to analyze the change of environmental capacity in Yong-in City, Gyeonggi-do, South Korea through calculation of ecological footprint indices and analysis of their changes, and to suggest implications for urban development and planning. In this study, we analyzed ecological footprints of 1993, 2003, and 2013 to understand the patterns of land use changes and development in Yong-in City. We also compared the GIS land cover maps and ecological footprint indices to figure out land cover changes associated with resource consumption in Yong-in City. As a result, we found the following three lessons. First, the ecological footprint indices of Yong-in City are 3.20(gha) in 1993, 6.50(gha) in 2003, and 11.15(gha) in 2013. This implies that the ecological footprint of Yong-in City is much larger than 1.80(gha), the globally required ecological footprint per capita and 3.56(gha), the average ecological footprint of South Korea. Second, the forest ecological footprint of Yong-in City was calculated as the largest, followed by the ecological footprints of energy, food, and built environment. In particular, the forest ecological footprint was the most rapidly increased from 0.002(gha) in 1993 to 7.32(gha) in 2013, followed by energy ecological footprint from 0.87(gha) to 2.38(gha). This implies that the provision and consumption of timber are seriously unbalanced, and energy consumption is unsustainable because of the rapid increase of residential and commercial land development in the city. Third, our analysis of the rapid increase of forest ecological footprint indicates that the disturbed forest areas are concentrated in the increased built environment areas. We also observed that the increase of energy ecological footprint indices was caused largely by the increase of the commercial and road areas. This implies that Yong-in City should minimize forest disturbance and expand green areas for future in the city. In addition, this may provide a reasonable ground that the city should reduce the use of fossil fuels and facilitate the use of renewable energy.

Analysis of the Effect of Heat Island on the Administrative District Unit in Seoul Using LANDSAT Image (LANDSAT영상을 이용한 서울시 행정구역 단위의 열섬효과 분석)

  • Lee, Kyung Il;Ryu, Jieun;Jeon, Seong Woo;Jung, Hui Cheul;Kang, Jin Young
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_3
    • /
    • pp.821-834
    • /
    • 2017
  • The increase in the rate of industrialization due to urbanization has caused the Urban Heat Island phenomenon where the temperature of the city is higher than the surrounding area, and its intensity is increasing with climate change. Among the cities where heat island phenomenon occurs, Seoul city has different degree of urbanization, green area ratio, energy consumption, and population density in each administrative district, and as a result, the strength of heat island is also different. So It is necessary to analyze the difference of Urban Heat Island Intensity by administrative district and the cause. In this study, the UHI intensity of the administrative gu and the administrative dong were extracted from the Seoul metropolitan area and the differences among the administrative districts were examined. and linear regression analysis were conducted with The variables included in the three categories(weather condition, anthropogenic heat generation, and land use characteristics) to investigate the cause of the difference in heat UHI intensity in each administrative district. As a result of analysis, UHI Intensity was found to be different according to the characteristics of administrative gu, administrative dong, and surrounding environment. The difference in administrative dong was larger than gu unit, and the UHI Intensity of gu and the UHI Intensity distribution of dongs belonging to the gu were also different. Linear regression analysis showed that there was a difference in heat island development intensity according to the average wind speed, development degree, Soil Adjusted Vegetation Index (SAVI), Normalized Difference Built-up Index (NDBI) value. Among them, the SAVI and NDBI showed a difference in value up to the dong unit and The creation of a wind route environment for the mitigation of the heat island phenomenon is necessary for the administrative dong unit level. Therefore, it is considered that projects for mitigating heat island phenomenon such as land cover improvement plan, wind route improvement plan, and green wall surface plan for development area need to consider administrative dongs belonging to the gu rather than just considering the difference of administrative gu units. The results of this study are expected to provide the directions for urban thermal environment design and policy development in the future by deriving the necessity of analysis unit and the factors to be considered for the administrative city unit to mitigate the urban heat island phenomenon.

Seismic Performance of Precast Infill Walls with Strain-Hardening Cementitious Composites (변형경화형 시멘트 복합체를 사용한 프리캐스트 끼움벽의 내진성능)

  • Kim, Sun-Woo;Yun, Hyun-Do;Jang, Gwang-Soo;Yun, Yeo-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.327-335
    • /
    • 2009
  • In the seismic region, non-ductile structures often form soft story and exhibit brittle collapse. However, structure demolition and new structure construction strategies have serious problems, as construction waste, environmental pollution and popular complain. And these methods can be uneconomical. Therefore, to satisfy seismic performance, so many seismic retrofit methods have been investigated. There are some retrofit methods as infill walls, steel brace, continuous walls, buttress, wing walls, jacketing of column or beam. Among them, the infilled frames exhibit complex behavior as follows: flexible frames experiment large deflection and rotations at the joints, and infilled shear walls fail mainly in shear at relatively small displacements. Therefore, the combined action of the composite system differs significantly from that of the frame or wall alone. Purpose of research is evaluation on the seismic performance of infill walls, and improvement concept of this paper is use of SHCCs (strain-hardening cementitious composites) to absorb damage energy effectively. The experimental investigation consisted of cyclic loading tests on 1/3-scale models of infill walls. The experimental results, as expected, show that the multiple crack pattern, strength, and energy dissipation capacity are superior for SHCC infill wall due to bridging of fibers and stress redistribution in cement matrix.

Selection of Light Character for Marking with Lights on Offshore Wind Farms (해양풍력발전단지 표지등광의 등질선정에 관한 연구)

  • Yang, Hyoung-Seon
    • Journal of Navigation and Port Research
    • /
    • v.38 no.2
    • /
    • pp.105-110
    • /
    • 2014
  • Korean government sets up a goal that jumps up to the third ranked powerful nation of offshore wind in the world until 2020 and announced "The plan for 2.5-gigawatt wind farm off the south-west coast by 2019". Such above, according to green energy policy, offshore wind farms(OWF) will be increased continuously. The development of OWF should be taken account of wind volume as well as marine traffic environment. Specially aids to navigation of OWF play a significant role in preventing collision between vessels navigating near waters and structures. For purpose of distinguishing OWF, IALA recommendations define installation of lights on SPS and IPS. However, there is no mention of light character that plays important role in identification of lights as marking offshore wind farm. Also the research on selection of proper light character has been insufficient state. Therefore in this paper, we analyzed internal and external regulations concerned marking with light on SPS and IPS in OWF. And suggested patterns and rhythms of light having not only easily recognized feature but also no confusion with other light of aids to navigation. The proposed light characters were verified by simulation, and the results were analysed that synchronism flickering of "Fl Y(4) 12s(SPS)" and "Fl Y 6s(IPS)" would be useful in combination of both lights.

A Model of Four Seasons Mixed Heat Demand Prediction Neural Network for Improving Forecast Rate (예측율 제고를 위한 사계절 혼합형 열수요 예측 신경망 모델)

  • Choi, Seungho;Lee, Jaebok;Kim, Wonho;Hong, Junhee
    • Journal of Energy Engineering
    • /
    • v.28 no.4
    • /
    • pp.82-93
    • /
    • 2019
  • In this study, a new model is proposed to improve the problem of the decline of predict rate of heat demand on a particular date, such as a public holiday for the conventional heat demand forecasting system. The proposed model was the Four Season Mixed Heat Demand Prediction Neural Network Model, which showed an increase in the forecast rate of heat demand, especially for each type of forecast date (weekday/weekend/holiday). The proposed model was selected through the following process. A model with an even error for each type of forecast date in a particular season is selected to form the entire forecast model. To avoid shortening learning time and excessive learning, after each of the four different models that were structurally simplified were learning and a model that showed optimal prediction error was selected through various combinations. The output of the model is the hourly 24-hour heat demand at the forecast date and the total is the daily total heat demand. These forecasts enable efficient heat supply planning and allow the selection and utilization of output values according to their purpose. For daily heat demand forecasts for the proposed model, the overall MAPE improved from 5.3~6.1% for individual models to 5.2% and the forecast for holiday heat demand greatly improved from 4.9~7.9% to 2.9%. The data in this study utilized 34 months of heat demand data from a specific apartment complex provided by the Korea District Heating Corp. (January 2015 to October 2017).

Accident Risk Consequences Analysis for Operating a Hydrogen Refueling Station in Urban Railway Site (도심 내 철도부지 수소충전소 운영을 위한 사고 위험 영향 분석)

  • Jae Yong Lee;Deokkyu Youn;Chul-Ho Lee;Jaeyoung Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.70-77
    • /
    • 2023
  • In response to climate change, each country is proposing a goal to reduce greenhouse gases in its energy supply and demand plan, and the use of hydrogen gas is a topic that is always prioritized as an energy resource for implementation. A popular way to use this hydrogen gas is the use of hydrogen fuel cell vehicles, and expansion of hydrogen charging stations is essential for using these hydrogen fuel cell vehicles. However, there are several limitations to the expansion of hydrogen refueling stations, the most representative of which is resident acceptance. Most of the hydrogen charging stations currently built in Korea are located in the outskirts with low population density, so the inconvenience to hydrogen fuel cell vehicle users has not been resolved, and as a result, there has been no progress in the spread of hydrogen fuel cell vehicles. In this paper, we analyzed the consequences of accident damage to determine the risks of constructing a hydrogen charging station on a railroad site frequently used by citizens. The target hydrogen charging station site was a railroad depot in Busan, and there are trains, national highways, and commercial facilities around this site. Assuming the worst-case scenario, we would like to consider the safety of the hydrogen refueling station site by analyzing the area affected by the accident and its consequence.

Structural Capacity Evaluation of Hybrid Precast Concrete Beam-Column Connections Subjected to Cyclic Loading (반복하중을 받는 하이브리드 프리캐스트 보-기둥 접합부의 성능평가)

  • Choi, Hyun-Ki;Yoo, Chang-Hee;Choi, Yun-Cheul;Choi, Chang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.325-333
    • /
    • 2010
  • In this study, new moment-resisting precast concrete beam-column joint made up of hybrid steel concrete was developed and tested. This beam-column joint is proposed for use in moderate seismic regions. It has square hollow tubular section in concrete column and connecting plate in precast U-beam. The steel elements in column and beam members were connected using bolt. Furthermore, in order to prevent the premature failure of concrete in hybrid steel-concrete connection, ECC(engineered cementitious composite) was used. An experimental study was carried out investigating the joint behavior subjected to reversed cyclic loading and constant axial compressive load. Two precast beam-column joint specimens and monolithic reinforced concrete joint specimen were tested. The variables for interior joints were cast-in-situ concrete area and transverse reinforcement within the joint. Tests were carried out under displacement controlled reverse cyclic load with a constant axial load. Joint performance is evaluated on the basis of connection strength, stiffness, energy dissipation, and displacement capacity. The test results showed that significant differences in structural behavior between the two types of connection because of different bonding characteristics between steel and concrete; steel and ECC. The proposed joint detail can induce to move the plastic hinge out of the ECC and steel plate. And proposed precast connection showed better performance than the monolithic connection by providing sufficient moment-resisting behavior suitable for applications in moderate seismic regions.

Development of Long-Term Electricity Demand Forecasting Model using Sliding Period Learning and Characteristics of Major Districts (주요 지역별 특성과 이동 기간 학습 기법을 활용한 장기 전력수요 예측 모형 개발)

  • Gong, InTaek;Jeong, Dabeen;Bak, Sang-A;Song, Sanghwa;Shin, KwangSup
    • The Journal of Bigdata
    • /
    • v.4 no.1
    • /
    • pp.63-72
    • /
    • 2019
  • For power energy, optimal generation and distribution plans based on accurate demand forecasts are necessary because it is not recoverable after they have been delivered to users through power generation and transmission processes. Failure to predict power demand can cause various social and economic problems, such as a massive power outage in September 2011. In previous studies on forecasting power demand, ARIMA, neural network models, and other methods were developed. However, limitations such as the use of the national average ambient air temperature and the application of uniform criteria to distinguish seasonality are causing distortion of data or performance degradation of the predictive model. In order to improve the performance of the power demand prediction model, we divided Korea into five major regions, and the power demand prediction model of the linear regression model and the neural network model were developed, reflecting seasonal characteristics through regional characteristics and migration period learning techniques. With the proposed approach, it seems possible to forecast the future demand in short term as well as in long term. Also, it is possible to consider various events and exceptional cases during a certain period.

  • PDF

Biodiversity Conservation and the Yellow Sea Large Marine Ecosystem Project (생물다양성 보전과 황해 광역 해양생태계 관리계획)

  • Walton, Mark
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.4
    • /
    • pp.335-340
    • /
    • 2010
  • The paper describes the objectives of Yellow Sea Large Marine Ecosystem (YSLME) project, focusing on procedural and practical aspects. YSLME is a highly productive sea yet possibly one of the most impacted large marine ecosystems, in terms of anthropogenic stressors, due the enormous coastal population. The aim of the YSLME project is the reduction of ecosystem stress through identification of the environmental problems in the Transboundary Diagnostic Analysis (TDA) that are then addressed in the Strategic Action Programme (SAP). One of the major problems found to be affecting biological diversity is habitat modification through wetland reclamation, conversion and degradation. Since the early 1900's more than 40% of intertidal wetlands have been reclaimed in Korea, and 60% of Chinese coastal wetlands have been converted or reclaimed. Damaging fishing practices, pollution and coastal eutrophication have further degraded the coastal environment reducing the biological diversity. To combat this loss, the YSLME project has mounted a public awareness campaign to raise environmental consciousness targeted at all different levels of society, from politicians at parliamentary workshops, local government officer training events, scientific conferences and involvement of scientists in the project research and reporting, to university and high school students in our visiting internship programmes and environmental camps. We have also built networks through the Yellow Sea Partnership and by liaising and working with other environmental organizations and NGOs. NGO's are recognised as important partners in the environmental conservation as they already have extensive local networks that can be lacking in international organisations. Effective links have been built with many of these NGOs through the small grants programme. Working with WWF's YSESP project and other academic and research institutions we have conducted our own biodiversity assessments that have contributed to the science-based development of the SAP for the YSLME. Our regional targets for biodiversity outlined in the SAP include: Improvements in the densities, distributions and genetic diversity of current populations of all living organisms including endangered and endemic species; Maintenance of habitats according to standards and regulations of 2007; and a reduction in the risk of introduced species. Endorsement of the SAP and its successful implementation, during the proposed second phase of the YSLEM project, will ensure that biological diversity is here to benefit future generations.