• Title/Summary/Keyword: 지식기반 신경망

Search Result 114, Processing Time 0.026 seconds

Bilinear Graph Neural Network-Based Reasoning for Multi-Hop Question Answering (다중 홉 질문 응답을 위한 쌍 선형 그래프 신경망 기반 추론)

  • Lee, Sangui;Kim, Incheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.8
    • /
    • pp.243-250
    • /
    • 2020
  • Knowledge graph-based question answering not only requires deep understanding of the given natural language questions, but it also needs effective reasoning to find the correct answers on a large knowledge graph. In this paper, we propose a deep neural network model for effective reasoning on a knowledge graph, which can find correct answers to complex questions requiring multi-hop inference. The proposed model makes use of highly expressive bilinear graph neural network (BGNN), which can utilize context information between a pair of neighboring nodes, as well as allows bidirectional feature propagation between each entity node and one of its neighboring nodes on a knowledge graph. Performing experiments with an open-domain knowledge base (Freebase) and two natural-language question answering benchmark datasets(WebQuestionsSP and MetaQA), we demonstrate the effectiveness and performance of the proposed model.

Neural Network based Multi-Agent Web Information Retrieval System (신경망 기반 멀티 에이전트 웹 정보 검색 시스템)

  • Choe, Yong-Seok;Yu, Seok-In
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.5
    • /
    • pp.665-673
    • /
    • 1999
  • 본 논문에서는 웹 정보검색을 위한 신경망 기반 멀티 에이전트 시스템을 제안한다. 제안된 시스템에서 각 에이전트는 신경망 메카니즘을 이용하여 사용자의 관련도 피드백으로부터 환경을 학습하고 사용자가 원하는 정보를 제공하는 자원을 찾아내어 효율적으로 웹 정보를 검색한다. 먼저 신경망 기반 웹 정보 검색 에이전트를 제시하고 단일 에이전트 기법을 사용할 경우의 문제점을 분석한다. 이를 기반으로 하여 멀티 에이전트 웹 정보 검색 시스템을 정의하고 사용자로부터 정보 검색 지식을 습득하기위한 훈련절차를 기술하며 협동적 정보 검색에 대해 설명한다. 마지막으로 제안된 시스템의 성능을 정형적으로 분석하고 실험을 통하여 기존의 검색 서비스와 비교 평가한다.

A Rule Extraction Method Using Relevance Factor for FMM Neural Networks (FMM 신경망에서 연관도요소를 이용한 규칙 추출 기법)

  • Lee, Seung-Kang;Lee, Jae-Hyuk;Kim, Ho-Joon
    • Annual Conference of KIPS
    • /
    • 2012.11a
    • /
    • pp.377-380
    • /
    • 2012
  • 본 연구에서는 학습데이터의 빈도요소를 반영하도록 수정된 구조의 FMM 신경망을 소개하고, 이로부터 패턴 분류를 위한 지식 표현을 생성하는 방법론을 제안한다. 하이퍼박스 멤버쉽함수는 5종류의 퍼지 분할을 기반으로 설정한 구간에 대하여 소속정도를 반영하여 결정하며, 각 차원별로 특징범위의 폭과 빈도 요소로부터 가중치 값이 학습된다. 본 연구에서는 제안된 이론을 수화인식 문제를 대상으로 고찰하였다. 인식 시스템의 구성은 특징추출을 위하여 3차원으로 확장된 구조의 CNN 모델을 사용하였으며, 수화패턴 데이터의 표현은 모션 히스토리 볼륨(Motion History Volume) 구조를 기반으로 하였다. 6종류의 수화패턴 동영상으로부터 27개 특징요소를 추출하고 이를 사용한 FMM 신경망의 학습과정과 지식의 추출 과정을 실험으로 보이고 그 유용성을 고찰한다.

Neural Network Refinement using Hidden Knowledge Extraction (은닉지식 추출을 이용한 신경망회로망 정제)

  • Kim, Hyeon-Cheol
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.11
    • /
    • pp.1082-1087
    • /
    • 2000
  • 신경회로망 구조의 정제(精製)는 회로망의 일반화능력이나 효율성의 관점에서 중요한 문제이다. 본 논문에서는 feed-forward neural networks로부터 은닉지식을 추출하는 방법을 사용하여 네트워크 재구성을 통한 정제방법을 제안한다. 먼저, 효율적인 if-then rule 추출방법을 제시하고 그 추출된 룰들을 사용하여 룰기반 네트워크로 변환하는 과정을 보여준다. 생성된 룰기반 네트워크 fully connected network에 비하여 상당히 축소된 연결 복잡도를 가지게 되며 일반적으로 더 우수한 일반화능력을 가지게 된다. 본 연구는 도메인 지식이 없이 데이타만 사용하여 어떻게 정제된 룰기반 신경망회로를 생성하고 있는가를 보여준다. 도메인 데이타들에 대한 실험결과도 제시하였다.

  • PDF

Knowledge Embedding Method for Implementing a Generative Question-Answering Chat System (생성 기반 질의응답 채팅 시스템 구현을 위한 지식 임베딩 방법)

  • Kim, Sihyung;Lee, Hyeon-gu;Kim, Harksoo
    • Journal of KIISE
    • /
    • v.45 no.2
    • /
    • pp.134-140
    • /
    • 2018
  • A chat system is a computer program that understands user's miscellaneous utterances and generates appropriate responses. Sometimes a chat system needs to answer users' simple information-seeking questions. However, previous generative chat systems do not consider how to embed knowledge entities (i.e., subjects and objects in triple knowledge), essential elements for question-answering. The previous chat models have a disadvantage that they generate same responses although knowledge entities in users' utterances are changed. To alleviate this problem, we propose a knowledge entity embedding method for improving question-answering accuracies of a generative chat system. The proposed method uses a Siamese recurrent neural network for embedding knowledge entities and their synonyms. For experiments, we implemented a sequence-to-sequence model in which subjects and predicates are encoded and objects are decoded. The proposed embedding method showed 12.48% higher accuracies than the conventional embedding method based on a convolutional neural network.

지식맵과 비교지식을 이용한 지능형 추천 시스템

  • 이희성;황인식;하성도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.211-211
    • /
    • 2004
  • 최근 인터넷 비즈니스의 증가로 고객 수요를 정확하게 예측하여 적절한 상품을 추천하는 추천 시스템의 개발 및 사용이 활발해지고 있다. 현재의 추천 시스템은 주로 내용 기반 추천(Content based Filtering)과 협력적 추천(Collaborative Filtering)을 사용하고 있으나 이러한 추천 시스템으로는 추천의 이유나 배경의 설명이 곤란하며, 시시각각 변하는 사용자의 의도를 파악하고 적절하게 응답하기에는 부족한 면이 있다.(중략)

  • PDF

패턴인식을 위한 신경망-지식기반융합모델-IPP(Intelligent Processing of Pattern) 모델

  • Lee, Gwang-Ro;Jang, Myeong-Uk;Park, Chi-Hang;Lee, Hun-Bok
    • ETRI Journal
    • /
    • v.14 no.4
    • /
    • pp.125-136
    • /
    • 1992
  • 일반적으로 사람이 패턴인식을 하는 데 있어서 여러 단계의 과정을 거쳐 인식함이 알려져 있다. 이와 같은 사람의 패턴인식 메카니즘(mechanism)을 모방하여 각 단계에 해당하는 기능을 수행하는 시스팀의 구성은 계층구조를 가짐은 물론 각각의 계층의 지식 또한 모듈화 되어야 한다. 특히 계층간의 지식이 상호작용을 통하여 지식이 처리되어야 할 것이다. 본 연구에서는 기존의 패턴인식 모델이 가지고 있는 문제점을 해결하기 위하여 인간의 패턴 인식 메카니즘에 대해 많이 알려진 여러가지 가설을 바탕으로 신경망 패턴인식 모델과 AI 패턴인식 모델을 융합한 새로운 IPP 모델을 제안한다. IPP 모델은 패턴을 인식할때 각 단계에서 생기는 다양성, 애매성 등을 다른 층의 지식을 사용하여 협조적으로 해결하며, 또한 인간처럼 직감적 처리와 논리적 처리를 상호협조적으로 정보를 교환하여 패턴을 인식한다. 즉, IPP 모델은 직감과 논리를 융합한 새로운 패턴인식 모델이다.

  • PDF

The hybrid of Artificial Neural Networks and Case-based Reasoning for Diagnosis System (인공 신경망과 사례기반 추론을 혼합한 진단 시스템)

  • Lee Gil-Jae;An Byeong-Yeol;Kim Mun-Hyeon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.130-133
    • /
    • 2006
  • 본 연구에서는 진단분야에서의 시스템의 성능을 향상시키고 최적의 해를 찾고자 사례기반추론과 인공 신경망을 혼합한 시스템을 제안한다. 사례기반추론은 과거의 사례(경험)를 통해 현재의 제시된 문제를 해결하는 추론방식으로, 지식이 획득이 덜 복잡하고, 정형화되기 어려운 규칙이나 문제영역이 불분명한 분야에 효율적으로 활용되었다. 그러나 사례의 양이 방대해야 효율적인 추론을 할 수 있으며, 검색된 시간 또한 지연되는 단점이 있다. 이러한 문제를 보완하고자 본 논문에서는 인공 신경망의 학습을 통해 저장된 ANN Library를 생성하여, 사례기반추론에서의 부적절한 해를 유추하는 것을 방지하고, 효율적이고 신뢰성이 높은 해를 유추해 내는데 목적이 있다.

  • PDF

Neural Machine Translation with Dictionary Information (사전 정보를 활용한 신경망 기계 번역)

  • Hyun-Kyun Jeon;Ji-Yoon Kim;Seung-Ho Choi;Bongsu Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.86-90
    • /
    • 2023
  • 최근 생성형 언어 모델이 주목받고 있으며, 이와 관련된 과제 또한 주목받고 있다. 언어 생성과 관련하여 많은 연구가 진행된 분야 중 하나가 '번역'이다. 번역과 관련하여, 최근 인공신경망 기반의 신경망 기계 번역(NMT)가 주로 연구되고 있으며, 뛰어난 성능을 보여주고 있다. 하지만 교착어인 한국어에서 언어유형학 상의 다른 분류에 속한 언어로 번역은 매끄럽게 번역되지 않는다는 한계가 여전하다. 따라서, 본 논문에서는 이러한 문제점을 극복하기 위해 한-영 사전을 통한 번역 품질 향상 방법을 제안한다. 또한 출력과 관련하여 소형 언어모델(sLLM)을 통해 CoT데이터셋을 구축하고 이를 기반으로 조정 학습하여 성능을 평가할 것이다.

  • PDF