• Title/Summary/Keyword: 지속가능한 성능

Search Result 483, Processing Time 0.028 seconds

Capacity of Opportunistic Incremental Relaying System Controlled by Truncated Power in Rayleigh Fading Channels (Rayleigh 페이딩 채널에서 Truncated 전력 제어된 기회전송 추가 릴레이 시스템의 전송용량)

  • Kim, Nam-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.1
    • /
    • pp.117-124
    • /
    • 2015
  • Recently an opportunistic incremental relaying (OIR) system has been studied for improving the performance degradation in fading channel. However there are few studies on power control in the system, and the studies are assumed perfect knowledge of the all channels at transmitters. The assumption that the source know all channel information is difficult in practical channels. Therefore, in this paper we assume that the source knows partial channel information and propose a modified truncated channel inversion (TCI) power control scheme for the OIR system. We derive the channel capacity of the proposed system and perform Monte Carlo simulation. It is noticed that the proposed OIR system has better capacity than that of the power controlled system with direct path only, and the capacity increases with the number of relays. The power controlled OIR system gained more capacity of 29.7%, 32.7%, and 33.5% than that of the system with direct path only for the number of relays of 1, 3, and 5, respectively. The results from this paper can be applied to the estimation of a theoretical capacity for the currently operating cellular systems when they adopt the IOR system.

A Case Study on Economic Analysis of a Solar Water Heating System and a Ground Source Heat Pump System Applied to a Military Building (군 복지시설의 지열시스템과 태양열시스템 경제성 평가 사례 연구)

  • Lee, Jong-Chan;Park, Young-Ho;Lee, Ghang;Lee, Sang-Ho
    • Korean Journal of Construction Engineering and Management
    • /
    • v.10 no.4
    • /
    • pp.111-118
    • /
    • 2009
  • This study is to analyze the performance of SWH(Solar Water Heating) and GSHP(Ground Source Heat Pump) systems by evaluating their energy efficiency and LCC(Life Cycle Cost) as being applied to the OO hall as a selected building in the Army. The OO hall, used as bathrooms, dining rooms, accommodations and offices, has reinforced concrete structure system with three floors above the ground and one underground, and its total floor area is approximately 2,917$m^2$. Two energy simulations are conducted to predict the yearly cooling and heating energy of the selected building: One is for analysis of an air-conditioning energy consumption using the e-Quest program, and another is for two new-renewable energy facilities as a water heating source using the RETScreen. The installed capacity of two new-renewable energy facilities is determined according to the 5% level of total standard construction cost. As a briefly result, SWH system is more energy-effective than GSHP system. Considering the break-even point, it is expected that SWH can take only 3 years 11 months to pay for itself in savings while the investment of GSHP can be recovered in more than 16 years 6 months.

A Basic Experimental Study on the Heat Energy Harvesting for Green SOC (녹색 사회기반시설의 열 에너지 하베스팅을 위한 기초실험 연구)

  • Jo, Byung-Wan;Lee, Duk-Hee;Lee, Dong-Yoon;Kim, Yoon-Ki
    • International Journal of Highway Engineering
    • /
    • v.12 no.3
    • /
    • pp.93-101
    • /
    • 2010
  • As the number of indispensable needs of clean energy increases due to the green new deal revolution, the possibility of heat energy harvesting from the surrounding infrastructures such as a railroad or highway was verified. In order to find more efficient usage of a heat source, the possibility of transforming heat into electricity were confirmed using Bi-Te type thermoelectric element, and electrical quality were tested with experiments of different heat source and environmental change in the surrounding infrastructures. After careful experiments, the possibility of collecting thermal energy and findings of the heat temperature change in infrastructrue are verified with a result of obtaining almost 20.82W in 70 celcius($^{\circ}C$) temperature differences and $1m^2$ surface area. Consequently, the ratio of heat temperatiure change and transforming surface area is the most crucial factor in the harvesting heat energy, and reducing thermal loss and improving thermal convection as well as transformation efficiency of thermoelectric element is required to get more efficient and durable generation.

A Study on Digital Reinforcements for Efficient Automotive Design - With Emphasis on VR based CAID System - (자동차 디자인 효율화를 위한 디지털 강화요소 연구 - VR 기반 CAID 시스템을 중심으로 -)

  • Cho, Kyung-Sil;Lee, Myung-Ki
    • Archives of design research
    • /
    • v.19 no.5 s.67
    • /
    • pp.55-64
    • /
    • 2006
  • As digital systems were introduced to automotive design in the mid 1980s, the design process has adopted many digital programs to save time compared to the conventional hand drafting. Digital technology was introduced not only to satisfy the reeds of the global environment, as the number of automobiles exported to many different parts of the world has increased, but also to save time and effort in developing several models of quality automobiles. Therefore, every automotive manufacturer in the world has expanded its virtual reality(VR) studio to establish visualization systems that visualize automobiles in the actual size and a co-operation system that enables simultaneous feedback from all of its design studios around the world. Unlike the existing design reviewing methos, the new improved feedback system is assessed as a reasonable method to evaluates and understand how the automobiles are actually manufactured in simulation. It is especially helpful when advanced products and concept cars require fast results. Other strengths of the new system include shorter development period, cost efficiency, no more manual labor, various designs within a short period of time, and realistic visualization of concepts. Large-scale products, including automobiles, need to be projected in the actual size and high clarity through the Power-wall System and are examined in a virtual space called a Cave. Therefore, it took much time to establish digital infrastructure. An infrastructure would constantly require system improvement and performance enhancement, but it is certain that now is the right time for the take-off to utilizing the strengths of digital design and improve the weaknesses. In this respect, this study provided an understanding of the importance of digital design based on digital reinforcements and examined an effective utilization of digital technology for an efficient development of automobiles in the future.

  • PDF

Efficient Virtual Machine Migration for Mobile Cloud Using PMIPv6 (모바일 클라우드 환경에서 PMIPv6를 이용한 효율적인 가상머신 마이그레이션)

  • Lee, Tae-Hee;Na, Sang-Ho;Lee, Seung-Jin;Kim, Myeong-Eeob;Huh, Eui-Nam
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37B no.9
    • /
    • pp.806-813
    • /
    • 2012
  • In a cloud computing environment, various solutions were introduced to provide the service to users such as Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Software as a Service (SaaS) and Desktop as a Service (DaaS). Nowadays, Mobile as a Service (MaaS) to provide the mobility in a cloud environment. In other words, users must have access to data and applications even when they are moving. Thus, to support the mobility to a mobile Thin-Client is the key factor. Related works to support the mobility for mobile devices were Mobile IPv6 and Proxy Mobile IPv6 which showed performance drawbacks such as packet loss during hand-over which could be very critical when collaborating with cloud computing environment. The proposed model in this paper deploys middleware and replica servers to support the data transmission among cloud and PMIPv6 domain. It supports efficient mobility during high-speed movement as well as high-density of mobile nodes in local mobility anchor. In this paper, through performance evaluation, the proposed scheme shows the cost comparison between previous PMIPv6 and verifies its significant efficiency.

A Study on Evaluation of Aircraft Rapid Arresting System Using the Numerical Analysis (수치해석을 이용한 항공기 과주방지 포장시스템의 평가방법에 관한 연구)

  • Lee, Young-Soo;Kim, Choon-Seon;Ha, Wook-Jai;Han, Jae-Hyun
    • International Journal of Highway Engineering
    • /
    • v.13 no.1
    • /
    • pp.185-195
    • /
    • 2011
  • Aircraft-related accidents cause mass casualties and major material damages. At present, runway-related accidents in our country account for 28% of all air accidents. Furthermore, internationally 33% of all air accidents is connected with runway. To prevent these accidents, FAA mandates the installation of aircraft rapid arresting system(ARAS) at the runway end safety areas which do not meet the FAA requirements. Even if the areas satisfy the conditions, FAA recommends the installation of ARAS to ensure the safety. In accordance of the international affairs, the domestic studies for ARAS are in progress and the legal formalities for domestic adoption of ARAS is under way. In this study, we analyzed the stopping distance, drag force, vertical force and tire penetration of runway overrun to assess the performance of ARAS reasonably by using two different kinds of analysis programs. The first is ARRESTOR program adopted by FAA, and the second is LS-DYNA which is available for 3-dimensional nonlineal dynamic analysis. As a result, analytically the stopping distances between two programs are similar. The drag force is rather different, but the tendencies are similar. Later on, the 3-dimensional simulation analysis considering various air-craft condition and properties of packaging materials is necessary. In addition, ongoing development of simulation analysis program is required for more accurate analistic results.

A Study on the Development of a Dry P0SCO E&C Fire Board Method with High Fire Resistance (건식화 P0SCO E&C Fire Board 공법 개발에 관한 연구)

  • Kim, Woo-Jae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.721-724
    • /
    • 2008
  • The present study was to develop a dry PFB method similar to the existing gypsum board construction method in order to apply the existing wet PFB method that uses fire.resistant adhesive. It was found that the existing wet method can produce concrete compressive strength of 80MPa and fire resistance of 3 hours with 30mm PF boards. The goal of development in this study was fire resistance of 3 hours through dry construction of 15mm fire resistant boards. The results of fire resistance test showed an increase in thermal durability and thermal strain. It is believed that inorganic fiber reduces thermal strain, and lowers heat insulation performance by 15% or less. This suggests that heat insulation performance was improved by the change in the inner composition of PF board resulting from the adjustment of Al:Si mol ratio, high temperature molding, and dry curing. According to the results of fire resistance test, when the dry PF method was applied, the temperature of the main reinforcing bar was 116$^\circ$C in 15mm, 103.8$^\circ$C in 20mm, and 94$^\circ$C in 25mm, and these results satisfied the current standards for fire resistance control presented by the Ministry of Land, Transport and Maritime Affairs. When a 3 hour fire resistance test was performed and the external properties of the specimen were examined, the outermost gypsum board hardly remained and internal PF board maintained its form without thermal strain.

  • PDF

A study on design for free cooling system using dry cooler (드라이쿨러를 적용한 외기냉수냉방 시스템 설계에 관한 연구)

  • Yoon, Jung-In;Baek, Seung-Moon;Heo, Jeong-Ho;Kim, Young-Min;Son, Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1027-1031
    • /
    • 2014
  • Free cooling system is used to reduce energy consumption of cooling system. Free cooling system is consisted of cooling group and dry-cooler in which heat exchange of chilled water and out air is conducted. Although this system has an excellent energy saving effect in place having cooling load regularly, data or material of design for free cooling system is lacked. In this study, characteristics analysis of free cooling system is conducted through software HYSYS with changing some facts. The main result is following as : Dry-cooler capacity is influenced by out air temperature, required chilled water temperature and LMTD(Logarithmic Mean Temperature Difference) of heat exchanger. As out air temperature is more low, dry-cooler capacity become increased. in addition, as required chilled water temperature is more high and LMTD is more low, the out air temperature range is widened for using dry-cooler. If out air temperature is below $0^{\circ}C$, antifreeze need to be used because freeze and burst can be occurred. In case of South Korea, antifreeze of 34% of ethylene glycol concentration is proper. When compressor load of R22, R134a and R407C is compared, considering environmental regulation and energy consumption, R134a is best working fluid.

A Feasibility Study on Application of a Deep Convolutional Neural Network for Automatic Rock Type Classification (자동 암종 분류를 위한 딥러닝 영상처리 기법의 적용성 검토 연구)

  • Pham, Chuyen;Shin, Hyu-Soung
    • Tunnel and Underground Space
    • /
    • v.30 no.5
    • /
    • pp.462-472
    • /
    • 2020
  • Rock classification is fundamental discipline of exploring geological and geotechnical features in a site, which, however, may not be easy works because of high diversity of rock shape and color according to its origin, geological history and so on. With the great success of convolutional neural networks (CNN) in many different image-based classification tasks, there has been increasing interest in taking advantage of CNN to classify geological material. In this study, a feasibility of the deep CNN is investigated for automatically and accurately identifying rock types, focusing on the condition of various shapes and colors even in the same rock type. It can be further developed to a mobile application for assisting geologist in classifying rocks in fieldwork. The structure of CNN model used in this study is based on a deep residual neural network (ResNet), which is an ultra-deep CNN using in object detection and classification. The proposed CNN was trained on 10 typical rock types with an overall accuracy of 84% on the test set. The result demonstrates that the proposed approach is not only able to classify rock type using images, but also represents an improvement as taking highly diverse rock image dataset as input.

Review of Assessing Soil Quality Criteria for Environmentally-Sound Agricultural Practics and Future Use (환경적으로 안전한 농업과 미래용도를 위한 토질 기준 평가 검토)

  • Doug Young Chung
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.2
    • /
    • pp.127-145
    • /
    • 1998
  • Unlike water or air quality standards that have been established by legislation using potential human health impact as the primary criterion, soil quality depends on the soils primary function and its relevant environmental factors, which is much more site- and soil specific. A properly characterized soil quality assessment system should serve as an indicator of the soil capacity to produce safe and nutritious food, to enhance human and animal health, and to overcome degrative processes. For our proposed example, a high quality soil with regard to maintaining an adequate soil productivity as a food production resources must accommodate soil and water properties, food chain, sustainability and utilization, environment, and profitability, that (i) facilitate water transfer and absorption, (ii) sustain plant growth, (iii) resist physical degradation of soil, (iv) produce a safe food resources, (v) cost-effective agricultural management. Possible soil quality indicators are identified at several levels within the framework for each of these functions. Each indicator is assigned a priority or weight that reflects its relative importance using a multi-objective approach based on principles of systems to be considered. To do this, individual scoring system is differentiated by the several levels from low to very high category or point scoring ranging from 0 to 10, And then weights are multiplied and products are summed to provide an overall soil quality rating based on several physical and chemical indicators. Tlne framework and procedure in developing the soil quality assessment are determined by using information collected from an alternative and conventional farm practices in the regions. The use of an expanded framework for assessing effects of other processes, management practices, or policy issues on soil quality is also considered. To develop one possible form for a soil quality index, we should permit coupling the soil characteristics with assessment system based on soil properties and incoming and resident chemicals. The purpose of this paper is to discuss approaches to defining and assessing soil quality and to suggest the factors to be considered.

  • PDF