• Title/Summary/Keyword: 지상장비

Search Result 464, Processing Time 0.023 seconds

Derivation of Nacelle Transfer Function Using LiDAR Measurement (라이다(LiDAR) 측정을 이용한 나셀전달함수의 유도)

  • Kim, Hyun-Goo;Kang, Yong-Heack;Yun, Chang-Yeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.9
    • /
    • pp.929-936
    • /
    • 2015
  • Nacelle anemometers are mounted on wind-turbine nacelles behind blade roots to measure the free-stream wind speed projected onto the wind turbine for control purposes. However, nacelle anemometers measure the transformed wind speed that is due to the wake effect caused by the blades' rotation and the nacelle geometry, etc. In this paper, we derive the Nacelle Transfer Function (NTF) to calibrate the nacelle wind speed to the free-stream wind speed, as required to carry out the performance test of wind turbines according to the IEC 61400-12-2 Wind-Turbine Standard. For the reference free-stream wind data, we use the Light Detection And Ranging (LiDAR) measurement at the Shinan wind power plant located on the Bigeumdo Island shoreline. To improve the simple linear regression NTF, we derive the multiple nonlinear regression NTF. The standard error of the wind speed was found to have decreased by a factor of 9.4, whereas the mean of the power-output residual distribution decreased by 6.5 when the 2-parameter NTF was used instead of the 1-parameter NTF.

Topographic Survey at Small-scale Open-pit Mines using a Popular Rotary-wing Unmanned Aerial Vehicle (Drone) (보급형 회전익 무인항공기(드론)를 이용한 소규모 노천광산의 지형측량)

  • Lee, Sungjae;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.25 no.5
    • /
    • pp.462-469
    • /
    • 2015
  • This study carried out a topographic survey at a small-scale open-pit limestone mine in Korea (the Daesung MDI Seoggyo office) using a popular rotary-wing unmanned aerial vehicle (UAV, Drone, DJI Phantom2 Vision+). 89 sheets of aerial photos could be obtained as a result of performing an automatic flight for 30 minutes under conditions of 100m altitude and 3m/s speed. A total of 34 million cloud points with X, Y, Z-coordinates was extracted from the aerial photos after data processing for correction and matching, then an orthomosaic image and digital surface model with 5m grid spacing could be generated. A comparison of the X, Y, Z-coordinates of 5 ground control points measured by differential global positioning system and those determined by UAV photogrammetry revealed that the root mean squared errors of X, Y, Z-coordinates were around 10cm. Therefore, it is expected that the popular rotary-wing UAV photogrammetry can be effectively utilized in small-scale open-pit mines as a technology that is able to replace or supplement existing topographic surveying equipments.

Making 2.5D with Vanishing Point in Photoshop (Photoshop Vanishing Point를 이용한 2.5D 제작에 관한연구)

  • Yoon, Young-Doo;Choi, Eun-Young
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.12
    • /
    • pp.146-153
    • /
    • 2009
  • Thanks to computer graphic technology development, graphic design programming is easily accessible by any home computer user today since it is free from the burdens of complicated 알고리듬 or the expensive graphic tools that were required in the past. The term 알고리듬 2.5 is commonly used by computer graphic designers to refer to 2D, a form of pseudo-3D. In this study, by using 2.5D, which was previously utilized for strengthening visual effects and engine efficiency, together with Adobe Photoshop along with After Effects, I will incorporate these into motion graphics. Today, motion graphics dominate the advertisement and image markets. Since viewers have developed higher expectations, a more dynamic 3D space graphic technology is preferred over the outdated 2D basis. In this study, I will produce a 2.5D image which is generated through a vanishing point filter of Adobe Photoshop and After Effects based on still image information and captured at an angle of Axonometric Projection. Also, I will compare the effectiveness of the production process and camera angle flexibility between the previous 3D process and new 2.5 D process.

Measuring and Generation the speed of reaction wheel for Spacecraft Dynamic Simulator using the T-Method (위성동역학 시뮬레이터용 T-방식을 이용한 반작용휠 속도 측정 및 펄스 생성)

  • Kim, Yong-Bok;Oh, Si-Hwan;Lee, Seon-Ho;Yong, Ki-Lyok;Rhee, Seung-Wu
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.74-82
    • /
    • 2007
  • The M-Method that measures the speed of actuator with counting the number of Reaction wheel Tacho Pulse has the many advantages such that a realization is simple and measuring time is uniform, but it also has the disadvantage that measuring speed becomes worse as the wheel speed goes lower. On the contrary, the T-Method that measures the time duration between the pulses is more accurate at lower-speed and its time delay is smaller than M-Method, but its realization is more difficult than M-Method because measuring time is varying with wheel speed variation. Thought M/T Method mixing M-Method with T-Method is widely used in order to measure the speed in the motor industrial area, one of two methods has been used in the spacecraft design area. Therefore, we try to apply both methods together to measuring the speed of Reaction Wheel, the core actuator for low earth orbit satellite. This paper provides the Reaction Wheel simulation board located in the Spacecraft Dynamic Simulator, ground support test set.

  • PDF

Maintenance of Hazardous Steep Slopes on National Park Trails (국립공원 탐방로 내 위험 급경사지 유지관리 방안 연구)

  • Kim, Hong Gyun;Kim, Tae Ho;Kim, Jae Hak;Kwak, Jae Hwan;Park, Sung Wook;Choi, Soo Won;Song, Young Karb
    • The Journal of Engineering Geology
    • /
    • v.26 no.1
    • /
    • pp.129-142
    • /
    • 2016
  • National parks, which are located mainly in mountainous areas, are always at risk of damage by landslides. The goal of this study is to establish a method for systematically maintaining hazardous steep slopes along trails in national parks. We produced a checklist suitable for each of the 19 national parks nationwide and investigated 183 slopes. The aim of these investigations is to recommend appropriate slope-stability countermeasures, including field investigations and stability analysis. We made preliminary investigations at specific sites, evaluating the slope hazard using specialized equipment such as terrestrial LiDAR. An investment priority formula was developed, and ranking and hazardous grades were calculated as part of a long-term maintenance plan. Finally, to systematically manage dangerous slopes and to house all the field data within one system, we developed the "Slope Maintenance System in National Parks" based on web server that can show various information for slopes.

Comparison of Vane-shear Strength Measured by Different Methods in Deep-sea Sediments from KODOS area, NE Equatorial Pacific (북동태평양 KODOS지역 심해 퇴적물의 베인 전단강도 측정 방법에 따른 결과 비교)

  • Chi, Sang-Bum;Jung, Hoi-Soo;Kim, Hyun-Sub;Moon, Jai-Woon
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.4
    • /
    • pp.390-399
    • /
    • 1999
  • Siliceous and calcareous deep-sea core sediments were collected by a multiple corer from the KODOS (Korea Deep Ocean Study) area, northeast equatorial Pacific, to compare vane shear strengths measured by two different apparatuses and in different places of on-board and on-land laboratories. The apparatuses were 1) a hand-held vane with four blades of $2.0{\times}2.0$ cm, and 2) a motorized shear vane system with four blades of $1.0{\times}0.88$ attached on a rotational viscometer. Depth profiles of shear strengths of core samples determined by the apparatuses do not show any consistent difference. Also, there is no consistent difference between shear strength values measured on-board and on-land laboratories after storing the core samples for three months in a cold room by a motorized shear vane system. However, there are considerable differences between depth profiles of shear strengths measured at four different points (holes) of a core sample. Moreover, significant differences among the profiles of different tube samples from a multiple corer within a sampling station were observed. Heterogeneity in physical properties of each depth and sediment column, possibly due to bioturbation and bottom current flows, is likely responsible for the differences in the geotechnical properties.

  • PDF

Retrieval of Aerosol Optical Depth with High Spatial Resolution using GOCI Data (GOCI 자료를 이용한 고해상도 에어로졸 광학 깊이 산출)

  • Lee, Seoyoung;Choi, Myungje;Kim, Jhoon;Kim, Mijin;Lim, Hyunkwang
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_1
    • /
    • pp.961-970
    • /
    • 2017
  • Despite of large demand for high spatial resolution products of aerosol properties from satellite remote sensing, it has been very difficult due to the weak signal by a single pixel and higher noise from clouds. In this study, aerosol retrieval algorithm with the high spatial resolution ($500m{\times}500m$) was developed using Geostationary Ocean Color Imager (GOCI) data during the Korea-US Air Quality (KORUS-AQ) period in May-June, 2016.Currently, conventional GOCI Yonsei aerosol retrieval(YAER) algorithm provides $6km{\times}6km$ spatial resolution product. The algorithm was tested for its best possible resolution of 500 m product based on GOCI YAER version 2 algorithm. With the new additional cloud masking, aerosol optical depth (AOD) is retrieved using the inversion method, aerosol model, and lookup table as in the GOCI YAER algorithm. In some cases, 500 m AOD shows consistent horizontal distribution and magnitude of AOD compared to the 6 km AOD. However, the 500 m AOD has more retrieved pixels than 6 km AOD because of its higher spatial resolution. As a result, the 500 m AOD exists around small clouds and shows finer features of AOD. To validate the accuracy of 500 m AOD, we used dataset from ground-based Aerosol Robotic Network (AERONET) sunphotometer over Korea. Even with the spatial resolution of 500 m, 500 m AOD shows the correlation coefficient of 0.76 against AERONET, and the ratio within Expected Error (EE) of 51.1%, which are comparable to the results of 6 km AOD.

3D Measurement Method Based on Point Cloud and Solid Model for Urban SingleTrees (Point cloud와 solid model을 기반으로 한 단일수목 입체적 정량화기법 연구)

  • Park, Haekyung
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_2
    • /
    • pp.1139-1149
    • /
    • 2017
  • Measuring tree's volume is very important input data of various environmental analysis modeling However, It's difficult to use economical and equipment to measure a fragmented small green space in the city. In addition, Trees are sensitive to seasons, so we need new and easier equipment and quantification methods for measuring trees than lidar for high frequency monitoring. In particular, the tree's size in a city affect management costs, ecosystem services, safety, and so need to be managed and informed on the individual tree-based. In this study, we aim to acquire image data with UAV(Unmanned Aerial Vehicle), which can be operated at low cost and frequently, and quickly and easily quantify a single tree using SfM-MVS(Structure from Motion-Multi View Stereo), and we evaluate the impact of reducing number of images on the point density of point clouds generated from SfM-MVS and the quantification of single trees. Also, We used the Watertight model to estimate the volume of a single tree and to shape it into a 3D structure and compare it with the quantification results of 3 different type of 3D models. The results of the analysis show that UAV, SfM-MVS and solid model can quantify and shape a single tree with low cost and high time resolution easily. This study is only for a single tree, Therefore, in order to apply it to a larger scale, it is necessary to follow up research to develop it, such as convergence with various spatial information data, improvement of quantification technique and flight plan for enlarging green space.

Robust Maneuvering Target Tracking Applying the Concept of Multiple Model Filter and the Fusion of Multi-Sensor (다중센서 융합 및 다수모델 필터 개념을 적용한 강인한 기동물체 추적)

  • Hyun, Dae-Hwan;Yoon, Hee-Byung
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.1
    • /
    • pp.51-64
    • /
    • 2009
  • A location tracking sensor such as GPS, INS, Radar, and optical equipments is used in tracking Maneuvering Targets with a multi-sensor, and such systems are used to track, detect, and control UAV, guided missile, and spaceship. Until now, Most of the studies related to tracking Maneuvering Targets are on fusing multiple Radars, or adding a supplementary sensor to INS and GPS. However, A study is required to change the degree of application in fusions since the system property and error property are different from sensors. In this paper, we perform the error analysis of the sensor properties by adding a ground radar to GPS and INS for improving the tracking performance by multi-sensor fusion, and suggest the tracking algorithm that improves the precision and stability by changing the sensor probability of each sensor according to the error. For evaluation, we extract the altitude values in a simulation for the trajectory of UAV and apply the suggested algorithm to carry out the performance analysis. In this study, we change the weight of the evaluated values according to the degree of error between the navigation information of each sensor to improve the precision of navigation information, and made it possible to have a strong tracking which is not affected by external purposed environmental change and disturbance.

  • PDF

Preliminary Analysis of Network-RTK for Navigation (차량항법용 네트워크 RTK 기반 연구)

  • Min-Ho, Kim;Tae-Suk, Bae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.5
    • /
    • pp.343-351
    • /
    • 2015
  • It is well-known that even the DGNSS (Differential Global Navigation Satellite System) technique in navigation for ground vehicles can only provide several meters of accuracy, such that it is suitable for simple guidance. On the other hand, centimeter to millimeter level accuracy can be obtained by using carrier phase observables in the field of precision geodesy/surveying. In this study, a preliminary study was conducted to apply NRTK (Network-RTK) by NGII (National Geographic Information Institute) to ground vehicle navigation. Onboard GNSS receivers were used for NRTK throughout the country, and the applicability of NRTK on navigation was analyzed based on NRTK surveying results. The analysis shows that the overall ambiguity fixing rate of NRTK is high and is therefore possible to apply it for navigation. In urban areas, however, the fixing rate decreases sharply, therefore, it needs to employ a method to minimize the effect of the float solutions, which can reach up to 10 meters. It is still feasible to obtain a centimeter level of accuracy in some area using NRTK under certain conditions. But, the ambiguity fixing rate of FKP falls down to 55% for high speed vehicles, and so the surveying accuracy should be determined by considering various factors of surveying environments. In addition, it is difficult to fix ambiguities using single-frequency GPS receivers. Finally, several suspicious NRTK(FKP) connection problems occurred during atmospheric disturbances (phase two or up), which should be investigated further in upcoming research.