• Title/Summary/Keyword: 지상기준국

Search Result 73, Processing Time 0.023 seconds

Simulation of GNSS Spoofing Detection Method Using Encrypted Ranging Signal (암호화 신호원을 이용한 위성항법 기만 검출기법 모의)

  • So, Hyoungmin
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.5
    • /
    • pp.394-400
    • /
    • 2016
  • It is well known that the encrypted ranging signal, such as GPS P(Y) code, is immune to spoofing attack. However, in order for users to use the signal, there needs permission from the operator. And also there are many restrictions for use because of security issues. In this paper, a ground reference station equipped with high-gain directional antenna and a user receiver were simulated. In the reference station, the encrypted code can be demodulated from the high-gain signal. And then the code can be used to detect spoofing attack in the user receiver. This paper proposes the spoofing detection method using the encrypted signal and deals with simulation results.

Performance Analysis of GNSS Ephemeris Fault Detection Algorithm Based on Carrier-Phase Measurement (반송파 측정값 기반 GNSS 궤도력 고장 검출 알고리즘 성능 분석)

  • Ahn, Jongsun;Jun, Hyang-Sig;Nam, Gi-Wook;Yeom, Chan-Hong;Lee, Young Jae;Sung, Sangkyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.6
    • /
    • pp.453-460
    • /
    • 2014
  • We analyze fault detection algorithm of ephemeris included in navigation message, which is one of the GNSS risk factors. This algorithm uses carrier-phase measurement and baseline vector of two reference stations and is alternative method for uncertainty condition of previous ephemeris. Even though same ephemeris fault is occurred, the geometry condition, between baseline vector of reference stations and satellites, effects on performance of algorithm. Also, we introduce the suitable geometry of reference stations, threshold and performance index (MDE : Minimum Detectable Error) in jeju international airport.

A Study on Deployment of Inland Reference Stations for Optimizing Marine and Inland User Performance Using Precise PNT (해양 및 내륙 정밀 PNT 사용자 성능 최적화를 위한 내륙 기준국 배치 연구)

  • Yebin Lee;Byungwoon Park
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.4
    • /
    • pp.396-409
    • /
    • 2023
  • In the field of autonomous vehicles, where high accuracy and reliability are critical, various satellite navigation augmentation systems have been developed to improve system performance. These systems generate correction and integrity information based on measurements and navigation data collected from ground reference stations, enhancing user positioning accuracy. Thus, the performance of the system heavily relies on the deployment and spacing of reference stations. To construct an effective satellite navigation augmentation system, careful consideration must be given to the installation points of reference stations. This paper presents a user positioning performance modeling formula and proposes a method for selecting the installation points of new reference stations. The proposed method involves selecting a candidate group area that can optimize the user's positioning performance. By utilizing this method, the system's performance can be improved, ensuring high accuracy and reliability for autonomous vehicle applications.

Conceptual Design of KASS Uplink Station (한국형 위성항법보강시스템(KASS) 위성통신국 기본 설계)

  • You, Moonhee;Sin, Cheon Sig
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.4
    • /
    • pp.72-77
    • /
    • 2017
  • The Satellite Based Augmentation System (SBAS) broadcasts to users integrity and correction information for Global Navigation Satellite System (GNSS) such as GPS and GLONASS using geostationary orbit (GEO) satellites. In accordance with the recommendation of the International Civilian Aeronautical Organization (ICAO) to introduce SBAS until 2025, a Korean SBAS system development / construction project is underway with the Ministry of Land, Transport and Maritime Affairs. Korea Augmentation Satellite System (KASS) is a high precision GPS correction system which is composed of KASS Reference Station (KRS), KASS Processing Station (KPS), KASS Uplink Station (KUS), KASS Control Station (KCS) and GEO satellites. In this paper, we provided the conceptual design of the KASS uplink station, which is composed of the Signal Generator Section (SGS) and the Radio-Frequency Section (RFS), and interface between the KASS ground sector and the GEO satellite.

Pseudolite-based Wide Area Differential GPS (WA-DGPS) Development and Primary Results (의사위성 기반 광역보정시스템(WA-DGPS) 구축 기술개발 및 성과)

  • Park, Hwang-Hun;Jo, Hak-Hyeon;Yun, Ho;Kee, Changdon
    • Journal of Navigation and Port Research
    • /
    • v.37 no.3
    • /
    • pp.263-267
    • /
    • 2013
  • This paper describes the progress and the plan of 'Wide Area Differential GPS (WA-DGPS) Development' project supported by Korean Ministry of Oceans and Fisheries. The project develops the main algorithms of the WA-DGPS which guarantees the improved accuracy, availability, and integrity all over the Korean peninsula. After the establishment of WA-DGPS ground infrastructure system, a real-time demonstration using pseudolite installed on the ground will be conducted in the final year. Also, the development of Korean Satellite-based Augmentation System (SBAS) is expected to be started from 2014, and the algorithms and the results in the WA-DGPS project will be used in the SBAS development.

Interference Analysis Between LEO Satellites for X-band Downlink (저궤도 위성 간 X-대역 하향링크에서의 간섭 영향성 분석)

  • Choo, Moogoong;Hwang, Inyoung;Bae, Minji;Seo, Inho;Ryu, Youngjae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.6
    • /
    • pp.489-496
    • /
    • 2021
  • The X-band frequencies for transmitting the data from earth observation satellites are limited, so a number of satellites share the frequency bands. In order for multiple satellites to utilize same or adjacent frequency bands, International Telecommunication Union - Radiocommunication (ITU-R) limits power flux density (PFD), which overcomes the interferences among multiple satellites. However, even under the regulation, the interference effect needs to be analyzed when multiple satellites are connected to communicate with multiple ground stations (GSs) located close to each other. In this paper, the interference effect is analyzed based on signal to interference plus noise ratio (SINR) when two low earth orbit (LEO) satellites operating in different orbits are connected to communicate with randomly located two GSs in Korean peninsula. From the analysis results, it is confirmed that there can be interferences during 365 days operation even if the satellites meet PFD requirement, but the periods under interference effects are short and the interference can be foreseen.

A Suggestion of Methodologies for Modular and Integrated Verification of WA-DGNSS Reference Station Software Suitable for Validation & Verification of DO-278 (DO-278의 Validation & Verification에 적합한 WA-DGNSS 기준국 소프트웨어의 모듈별 통합 검증 방법론 제시)

  • Yoon, Donghwan;Park, Byung-Woon;Choi, Wan-Sik;Kee, Changdon;Seo, Seungwoo;Park, Junpyo
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.1
    • /
    • pp.15-21
    • /
    • 2015
  • WA-DGNSS is a system to service for users using a satellite which received correction data from ground station that calculates the relative errors of the tracked GNSS signals and sends to a satellite. Users are guaranteed the reliability of the GNSS signal and the accuracy of positioning. ICAO recommends the application of WA-DGNSS for the airplane taking off and landing process. In this paper, we suggests methods to verify of the pre-developed WA-DGNSS reference software constituting modules and an integration test process refer to the RTCA DO-278 which is a document for the development process of an aeronautics software. Also, we statistically verified the reference software test through our methods. And then, we confirmed to performance the function of the reference software properly.

Analysis of C/N Variation of Ku Band Satellite Beacon Receiver According to Rain Attenuation (강우 감쇠에 따른 Ku 대역 위성 비콘 수신기 C/N 변화 해석)

  • Park, Dae-Kil;Lee, Kyung-Soon;Koo, Kyung Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.5
    • /
    • pp.415-419
    • /
    • 2018
  • This paper predicts and measures the C/N ratio of a beacon signal transmitted from geostationary orbit satellite KorSat 5A ($113^{\circ}E$) at a ground station located in Kimpo. Based on the ground stations, we compared the rain attenuation of the zone K of ITU-R and the rain attenuation which analyzed the domestic weather information. In ITU-R, the Korean rainfall characteristics are classified into zone K, but forecasting the rainfall intensity and attenuation of three adjacent cities based on the cumulative rainfall data per minute from 2013 to 2017. The calculation of rainfall path and attenuation is based on ITU-R recommendations. The change of the C/N according to the rainfall amount was confirmed through the 2 week satellite beacon signal C/N measurement. The predicted critical C/N was decreased to 12 dB at $A_{0.3}$. During the experiment, it was confirmed that it decreased up to 8 dB according to the concentrated rainfall.

Development of B-Value Based GBAS Ground Facility Error Standard Deviation Model and Verification (B-Value를 이용한 GBAS 지상국 오차 표준편차 모델 개발 및 성능 평가)

  • Jun, Hyang-Sig;Ahn, Jong-Sun;Lee, Young-Jae;Choi, Young-Kiu;Sung, Sang-Kyung;Yeom, Chan-Hong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.12
    • /
    • pp.1232-1237
    • /
    • 2009
  • The ICAO and FAA are developing and verifying of GBAS for civil aircraft landing and take-off. The guarantee of aircraft integrity issue is the important part of GBAS. To guarantee integrity, the GBAS ground facility broadcasts various informations to aircraft. The informations are related to the estimated accuracy of each pseudorange correction and the estimated error terms, for example B-value and standard deviation of the ground facility error. These parameters are used to calculate position error (estimated value of the user). If estimated position errors don't satisfy requirements, aircraft use alternate navigation means. In this paper, GBAS reference stations's real data, which operated by KARI (Korea Aerospace Research Institute) in Jeju international airport, are used to development of new ground facility error standard deviation model. We verify improvement of GBAS availability, with respected to vertical protection level, using B-value based a new ground facility error standard deviation model and a sigma inflation factor.

Accuracy Analysis of Ortho Imagery with Different Topographic Characteristic (지역적 특성에 따른 정사영상의 정확도 분석)

  • Jo, Hyun-Wook;Park, Joon-Kyu
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.1
    • /
    • pp.80-89
    • /
    • 2008
  • Mapping applications using satellite imagery have been possible to quantitative analysis since SPOT satellite with stereo image was launched. Especially, high resolution satellite imagery was efficiently used in the field of digital mapping for the areas which are difficult to produce large-scale maps by aerial photogrammetry or carry out ground control point surveying due to unaccessibility. This study extracted the geospatial information out of consideration for topographic characteristic from ortho imagery of the National Geospatial-intelligence Agency(NGA) in the United States of America and analyzed the accuracy of plane coordinate for ortho imagery. For this purpose, the accuracy according to topographic character by comparison between both extraction data from ortho imagery and the digital topographic maps of 1:5000 scale which were produced by Korea National Geographic Information Institute(NGI) was evaluated. It is expected that the results of this study will be fully used as basic information for ground control point acquisition or digital mapping in unaccessible area.

  • PDF