• Title/Summary/Keyword: 지보 시스템

Search Result 70, Processing Time 0.026 seconds

Development of Steel Wire-Integrated Deck Plate Applicable to Slab with 180mm Thickness (두께 180mm 슬래브에 적용 가능한 철선일체형 데크 플레이트 개발)

  • Lee, Yong Jae;Yoon, Sang Chun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.1
    • /
    • pp.89-98
    • /
    • 2012
  • A steel wire-integrated deck plate that welds integrated triangle truss steel wires on a galvanized steel sheet is developed to reduce construction costs of slabs or formworks such as shores and supports, and it is already widely applied in many construction fields. In this research, experimental tests for 14 full scale specimens, which are in the same field conditions, are conducted on several parameters such as the diameter of top, bottom and lattice steel wire, cutting methods of ends. According to the result, changes in final destruction types of the test bodies and cutting methods of ends didn't affect structural performance of test specimens, and for a 4.0m-span test specimen, there was no big problems in using bottom bar D7 or D8.

2D Analytical Model to Evaluate Behavior of Pipeline in Lowering Phase (자원 이송용 파이프라인의 내리기 단계에서 평면 거동 평가를 위한 해석 모델)

  • Jung Suk Kim;Ki Yong Ann
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.467-475
    • /
    • 2023
  • To ensure the safety of the pipeline against large deformation of the pipeline during lowering construction, the analysis for pipeline becomes emphasized. The FE analysis has a lower efficiency at calculating time, while it could be obtained high accuracy. In this paper, a reasonable analytical model for analysis of pipeline is proposed during lowering-in. This analytical model is partitioned considering the geometrical characteristics and modeled as two parameters Beam On Elastic Foundation and Euler-Bernoulli beam considering the boundary condition. This takes into account the pipeline-soil interaction and the axial forces acting on the pipeline. Previous model can only be applied to standardized conditions, whereas the proposed model defined as Segmented Pipeline Model can be considered for the majority of construction conditions occurred during lowering-in. In addition, minimized assumptions and segmented elements lead to improve the convenience and applicability of modeling. Nevertheless, the model shows accurate results compared to the FE model. Accordingly, it is expected that it will be used efficiently for configuration management as well as safety assessment of pipeline during lowering-in.

Evaluation of Cave-in Possibility of a Shallow Depth Rock Tunnel by Rock Engineering Systems and Uumerical Analyses (암반공학시스템과 수치해석을 이용한 저심도 암반터널에서의 붕락 발생 가능성 평가)

  • Kim, Man-Kwang;Yoo, Young-Il;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.19 no.3
    • /
    • pp.236-247
    • /
    • 2009
  • Overpopulation has significantly increased the use of underground spaces in urban areas, and led to the developments of shallow-depth underground space. Due to unexpected rock fall, however, it is very necessary to understand and categorize the rock mass behaviors prior to the tunnel excavation, by which unnecessary casualties and economic loss could be prevented. In case of cave-in, special attention should be drawn since it occurs faster and greater in magnitude compared to rock fall and plastic deformation. Types of cave-in behavior are explained and categorized using seven parameters - Uniaxial Compressive Strength (UCS), Rock Quality Designation (RQD), joint surface condition, in-situ stress condition, ground water condition, earthquake & ground vibration, tunnel span. This study eventually introduces a new index called Cave-in Behavior Index (CBI) which explains the behavior of cave-in under given in-situ conditions expressed by the seven parameters. In order to assess the mutual interactions of the seven parameters and to evaluate the weighting factors for all the interactions, survey data of the experts' opinions and Rock Engineering Systems (RES) were used due to lack of field observations. CBI was applied to the tunnel site of Seoul Metro Line No. 9. UDEC analyses on 288 cases were done and occurrences of cave-in in every simulation were examined. Analyses on the results of 288 cases of simulations revealed that the average CBI for the cases when cave-in for different patterns of tunnel support was estimated by a logistic regression analysis.

Model Test Study on the Reinforcing Effect of Inclined System Bolting (경사볼트의 보강효과에 대한 모형시험 연구)

  • Lee, Jea-Dug;Kim, Byoung-Il;Piao, Ming-Shan;Yoo, Wan-Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5C
    • /
    • pp.231-238
    • /
    • 2012
  • The rockbolt functions as a main support, which restricts enlargement of the plasticity area and increases stability in the original ground around tunnels, and prevents a second deformation of an excavated surface by supplementing vulnerability arising from opening of the excavated surface. System bolting is generally applied if ground conditions are bad. System bolting is generally installed perpendicular to the excavation direction in every span. If a place is narrow, or it is difficult to insert bolts due to construction conditions, it may be connected and used with short bolts, or installed obliquely. In this study, laboratory model tests were performed to analyze the effect of the ground being reinforced by inclined bolts, based on a bending theory that assumes that the reinforced ground is a simple beam. In all test cases, deflections and vertical earth pressures induced by overburden soil pressure were measured. Total of 99 model tests were carried out, by changing the installation angle of bolts, lateral and longitudinal distance of bolts, and soil height. The model test results indicated that when the installation angle of bolts was less than $75^{\circ}$, deflections of model beams tended to increase rapidly. Also, the relaxed load that was calculated by earth pressure was rapidly increased when the installation angle of bolts was less than $75^{\circ}$. However, the optimum installation angle of inclined bolts was judged to be in the range of $90^{\circ}{\sim}75^{\circ}$. Also, as might be expected, the reinforcement effect of bolts was increased when the longitudinal and lateral distance of bolts was decreased.

A Thermo-Hydro-Mechanical Coupled Numerical Simulation on the FE Experiment: Step 1 Simulation in Task C of DECOVALEX-2023 (Mont Terri FE 실험 대상 열-수리-역학 복합거동 수치해석: DECOVALEX-2023 Task C 내 Step 1 수치해석 연구)

  • Taehyun, Kim;Chan-Hee, Park;Changsoo, Lee;Jin-Seop, Kim
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.518-529
    • /
    • 2022
  • In Task C of the DECOVALEX-2023 project, nine institutes from six nations are developing their numerical codes to simulate thermo-hydro-mechanical coupled behavior for the FE experiment performed at Mont Terri underground rock laboratory, Switzerland. Currently, Step 1 for comparing the simulation results to field data is the ongoing stage, and we used the OGS-FLAC simulator for a series of numerical simulations. As a result, temperature increase depending on the heating hysteresis was well simulated, and saturation variation in the bentonite depending on phase change was observed. However, due to the suction overestimation, relative humidity and temperature change in the bentonite and the pressure variation in the Opalinus clay showed a difference compared to the field data. From the observation, it is confirmed that the effect of the bentonite capillary pressure is dominant to the flow analysis in the disposal system. We further plan to draw improved results considering tunnel support material and accurate initial water pressure distribution. Additionally, the thermal, hydrological, and mechanical anisotropy of the Opalinus clay was well simulated. From the simulation results, we confirmed the applicability of the OGS-FLAC simulator in the disposal system analysis.

Analysis on the Deformation Characteristics of a Pillar between Large Caverns by Burton-Bandis Rock Joint Model (Barton-Bandis 절리 모델에 의한 지하대공동 암주의 변형 특성 연구)

  • 강추원;임한욱;김치환
    • Tunnel and Underground Space
    • /
    • v.11 no.2
    • /
    • pp.109-119
    • /
    • 2001
  • Up to now single large cavern was excavated for each undergroud hydraulic powerhouse in Korea. But the Yangyang underground hydraulic powerhouse consists of two large caverns; a powerhouse cavern and main transformer cavern. In this carte, the structural stability of the caverns, especially the rock pillar formed between two large caverns, should be guaranteed to be sound to make the caverns permanently sustainable. In this research, the Distinct Element Method(DEM) was used to analyze the structural stability of two caverns and the rock pillar. The Barton-Bandis joint model was used as a constitutive model. The moot significant parameters such as in-site stress, JRC of in-situ natural joints, and spatial distribution characteristics of discontinuities were acquired through field investigation. In addition, two different cases; 1) with no support system and 2) with a support system, were analysed to optimize a support system and to investigate reinforcing effects of a support system. The results of analysis horizontal displacement and joint shear displacement proved to be reduced with the support system. The relaxed zone in the rock pilar also proved to be reduced in conjunction with the support system. Having a support system in place provided the fact that the non zero minimum principal stresses were still acting in the rock pillar so that the pillar was not under uniaxial compressive condition but under triaxial compressive condition. The structural stability f an approximately 36 m wide rock pillar between two large caverns was assured with the appropriate support system.

  • PDF

Study on Q-value prediction ahead of tunnel excavation face using recurrent neural network (순환인공신경망을 활용한 터널굴착면 전방 Q값 예측에 관한 연구)

  • Hong, Chang-Ho;Kim, Jin;Ryu, Hee-Hwan;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.3
    • /
    • pp.239-248
    • /
    • 2020
  • Exact rock classification helps suitable support patterns to be installed. Face mapping is usually conducted to classify the rock mass using RMR (Rock Mass Ration) or Q values. There have been several attempts to predict the grade of rock mass using mechanical data of jumbo drills or probe drills and photographs of excavation surfaces by using deep learning. However, they took long time, or had a limitation that it is impossible to grasp the rock grade in ahead of the tunnel surface. In this study, a method to predict the Q value ahead of excavation surface is developed using recurrent neural network (RNN) technique and it is compared with the Q values from face mapping for verification. Among Q values from over 4,600 tunnel faces, 70% of data was used for learning, and the rests were used for verification. Repeated learnings were performed in different number of learning and number of previous excavation surfaces utilized for learning. The coincidence between the predicted and actual Q values was compared with the root mean square error (RMSE). RMSE value from 600 times repeated learning with 2 prior excavation faces gives a lowest values. The results from this study can vary with the input data sets, the results can help to understand how the past ground conditions affect the future ground conditions and to predict the Q value ahead of the tunnel excavation face.

A preliminary numerical analysis on the behaviour of tunnel under construction in fracture zone considering seismic load (지진 하중을 고려한 단층파쇄대에서의 시공 중 터널 거동 분석에 관한 수치해석적 연구)

  • Oh, Dong-Wook;Hong, Soon-Kyo;Kim, Dae-Kon;Lee, Yong-Joo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.2
    • /
    • pp.279-299
    • /
    • 2019
  • Recently occurred earthquake Gyeongju and Pohang served as a momentum to remind that Korean peninsular is not a safety zone from earthquake anymore. The importance of seismic design, therefore, have been realized and researches regarding design response spectrum have been actively carried out by many researchers and engineers. Current tunnel seismic design method is conducted to check safety of tunnel structure by dynamic numerical analysis with condition of completed lining installation, so, it is impossible to consider safety of tunnel behavior under construction. In this study, therefore, dynamic numerical analysis considering seismic wave propagations has been performed after back analysis using results from field monitoring of tunnel under construction in fractured zone and 1st reinforcement (shotcrete, rockbolt) behaviour are analyzed. Waves are classified by period characteristic (short and long). As a result, the difference depending on period characteristic is minor, and increasements of displacement are obtained at crown displacement due to seismic wave is 28~31%, 14~16% at left side of tunnel in the fractured zone, 13~27% at right side of tunnel in the bed rock, respectively. In case of shotcrete axial force is increased 113~115% at tunnel crown, 102% at left side, 106~110% at right side, respectively. Displacement and axial force of rockbolts which are selected by type of anchored grounds (only fractured zone, fractured zone and bed rock, only bedrock) are analyzed, as a result, rockbolt which is anchored to fractured zone and bed rock at the same time are weaker than any other case.

Quantitative evaluation of collapse hazard levels of tunnel faces by interlinked consideration of face mapping, design and construction data: focused on adaptive weights (막장관찰 및 설계/시공자료가 연계 고려된 터널막장 붕괴 위험도의 정량적 산정: 가변형 가중치 중심으로)

  • Shin, Hyu-Soung;Lee, Seung-Soo;Kim, Kwang-Yeom;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.5
    • /
    • pp.505-522
    • /
    • 2013
  • Previously, a new concept of indexing methodology has been proposed for quantitative assessment of tunnel collapse hazard level at each tunnel face with respect to the given geological data, design condition and the corresponding construction activity (Shin et al, 2009a). In this paper, 'linear' model, in which weights of influence factors are invariable, and 'non-linear' model, in which weights of influence factors are variable, are taken into account with some examples. Then, the 'non-linear' model is validated by using 100 tunnel collapse cases. It appears that 'non-linear' model allows us to have adapted weight values of influence factors to characteristics of given tunnel site. In order to make a better understanding and help for an effective use of the system, a series of operating processes of the system are built up. Then, by following the processes, the system is applied to a real-life tunnel project in very weak and varying ground conditions. Through this approach, it would be quite apparent that the tunnel collapse hazard indices are determined by well interlinked consideration of face mapping data as well as design/construction data. The calculated indices seem to be in good agreement with available electric resistivity distribution and design/construction status. In addition, This approach could enhance effective usage of face mapping data and lead timely and well corresponding field reactions to situation of weak tunnel faces.

Analysis of Thermal Environment Characteristics by Spatial Type using UAV and ENVI-met (UAV와 ENVI-met을 활용한 공간 유형별 열환경 특성 분석)

  • KIM, Seoung-Hyeon;PARK, Kyung-Hun;LEE, Su-Ah;SONG, Bong-Geun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.1
    • /
    • pp.28-43
    • /
    • 2022
  • This study classified UAV image-based physical spatial types for parks in urban areas of Changwon City and analyzed thermal comfort characteristics according to physical spatial types by comparing them with ENVI-met thermal comfort results. Physical spatial types were classified into four types according to UAV-based NDVI and SVF characteristics. As a result of ENVI-met thermal comfort, the TMRT difference between the tree-dense area and other areas was up to 30℃ or more, and it was 19. 6℃ at 16:00, which was the largest during the afternoon. As a result of analyzing UAV-based physical spatial types and thermal comfort characteristics by time period, it was confirmed that the physical spatial types with high NDVI and high SVF showed a similar to thermal comfort change patterns by time when using UAV, and the physical spatial types with dense trees and artificial structures showed a low correlation to thermal comfort change patterns by time when using UAV. In conclusion, the possibility of identifying the distribution of thermal comfort based on UAV images was confirmed for the spatial type consisting of open and vegetation, and the area adjacent to the trees was found to be more thermally pleasant than the open area. Therefore, in the urban planning stage, it is necessary to create an open space in consideration of natural covering materials such as grass and trees, and when using artificial covering materials, it is judged that spatial planning should be done considering the proximity to trees and buildings. In the future, it is judged that it will be possible to quickly and accurately identify urban climate phenomena and establish urban planning considering thermal comfort through ground LIDAR and In-situ measurement-based UAV image correction.